
Trojan Data Layouts: Right Shoes for a Running Elephant∗

Alekh Jindal Jorge-Arnulfo Quiané-Ruiz Jens Dittrich

Information Systems Group
Saarland University

http://infosys.cs.uni-saarland.de

ABSTRACT
MapReduce is becoming ubiquitous in large-scale data analysis.
Several recent works have shown that the performance of Hadoop
MapReduce could be improved, for instance, by creating indexes in
a non-invasive manner. However, they ignore the impact of the data
layout used inside data blocks of Hadoop Distributed File System
(HDFS). In this paper, we analyze different data layouts in detail in
the context of MapReduce and argue that Row, Column, and PAX
layouts can lead to poor system performance. We propose a new
data layout, coined Trojan Layout, that internally organizes data
blocks into attribute groups according to the workload in order to
improve data access times. A salient feature of Trojan Layout is
that it fully preserves the fault-tolerance properties of MapReduce.
We implement our Trojan Layout idea in HDFS 0.20.3 and call
the resulting system Trojan HDFS. We exploit the fact that HDFS
stores multiple replicas of each data block on different computing
nodes. Trojan HDFS automatically creates a different Trojan Lay-
out per replica to better fit the workload. As a result, we are able
to schedule incoming MapReduce jobs to data block replicas with
the most suitable Trojan Layout. We evaluate our approach using
three real-world workloads. We compare Trojan Layouts against
Hadoop using Row and PAX layouts. The results demonstrate that
Trojan Layout allows MapReduce jobs to read their input data up
to 4.8 times faster than Row layout and up to 3.5 times faster than
PAX layout.

Categories and Subject Descriptors
H.2.4 [Database Management]: Systems

General Terms
Design, Performance

Keywords
MapReduce, per-replica data layout, column grouping

∗Work partially supported by the Saarbrücken Cluster of Excel-
lence on Multimodal Computing and Interaction (M2CI).

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SOCC’11, October 27–28, 2011, Cascais, Portugal.
Copyright 2011 ACM 978-1-4503-0976-9/11/10 ...$10.00.

customer orders lineitem

!

"

SCAN

!

"

SCAN

!

"

SCAN

c_mktsegment=SEG o_orderdate=DATE l_shipdate=”DATE”

c_custkey=o_custkey

o_orderkey=l_orderkey

[T
h
is

 p
ap

er
]

[H
ad

o
o
p
+

+
]

MapReduce
Code Analyzer

map (Key k, Value v) {
. . .

}

reduce (Key ik, Value[] ivs) {
. . .

}

MapReduce Job Query Plan of the MapReduce Job

[H
ad

o
o
o
p
To

SQ
L
]

[M
an

im
al

]
[P

ig
 L

at
in

]
Figure 1: Example of some research works in MapReduce.

1. INTRODUCTION
Analyzing terabytes of data on a daily basis is a common task for

many enterprises such as Google, Facebook, and Yahoo!. With this
trend, MapReduce [13] is quickly becoming the de facto standard
for large-scale analysis in industry. However, it has been shown
that MapReduce suffers from very slow execution times in analyt-
ical queries compared to DBMSs [26]. Several recent works have
improved the performance of MapReduce. Figure 1 illustrates the
research focus of some of these research works. For instance, Pig
Latin by Olston et al. proposed a new interface to execute MapRe-
duce jobs [25] (top-left box in Figure 1); other researchers proposed
HadoopToSQL [19] and Manimal [7] to automatically analyze the
code of MapReduce jobs in order to produce more efficient query
plans (bottom-left box); we recently proposed Hadoop++, a new
system that improves the performance of MapReduce jobs by in-
jecting code into the MapReduce query plans [14] (top-right box).
Many other works have focused on improving MapReduce in other
aspects [27, 18, 20, 22, 24]. However, none of these works con-
siders the impact of data layouts, per distributed file system (DFS)
data block, on the data read performance of MapReduce jobs. This
paper fills this gap: we analyze the different data layouts in detail.
The red part in Figure 1 illustrates the focus of this paper.

1.1 Background and Motivation
Traditional Layouts in MapReduce. Currently, MapReduce pro-
cesses input data blocks in a strictly row-oriented fashion. Thus,
all tuple attributes have to be read from disk even if only some of
them are relevant to process a given task. The disadvantage of a
row-oriented layout has been thoroughly researched in the context
of column stores [1, 3, 9, 31, 28]. However, in a distributed system
a column store has severe drawbacks as the data blocks for differ-
ent columns may reside on different nodes. Thus, whenever a query
references more than one attribute, columns have to be sent through
the network in order to merge different attributes values into a row

1

 0

 1

 2

 3

 4

 5

 5 10 15 20 25 30

Da
ta

 A
cc

es
s

Co
st

 [s
ec

]

Number of Referenced Attributes (Out of 30)

Trojan Layout
Row Layout

Column Layout
PAX Layout

Optimal Layout

Figure 2: Data access costs for different data layouts in Hadoop.

(tuple reconstruction). For instance, consider a table AccessLog
containing access log-records of a web server. Assume the follow-
ing simple SQL-query:

SELECT url, sourceip FROM AccessLog
WHERE url LIKE ‘%.edu%’;

To process this query MapReduce needs to either: (1) fetch and
scan all columns, join them to reconstruct tuples containing at-
tribute values for both url and sourceip, and then filter those
tuples to only return the ones containing “.edu” in their url; or
(2) scan column url, collect the tuple-IDs of matching tuples and
match them to retrieve the sourceip value of each tuple. The latter
process is called late materialization [2]. In either case, the prob-
lem is that the attributes referenced after the SELECT clause have to
be fetched over the network in many cases. This can significantly
decrease the performance of MapReduce jobs.
Hybrid Layout in MapReduce. For these reasons a clever opti-
mization is to use a hybrid layout of columns and rows. The idea is
to keep the same data on a block as we would keep in a row layout.
However, in contrast to a row layout, inside a block data is orga-
nized into a column layout. This approach is termed PAX (partition
across) and was first proposed in the context of page organization in
a DBMS [6]. Recently, it was also introduced in MapReduce [11,
32]. Using PAX in MapReduce has big advantages: (1) tuple re-
construction does not trigger expensive fetches over the network,
as all data values belonging to a tuple are locally available inside
a block, (2) the execution pipeline does not have to be changed at
all to implement complex tuple reconstructing joins, and (3) as data
blocks are typically large, about 256 MB, the subpage containing
data for a specific attribute is very large. For instance, assuming
a table having 30 attributes of equal size, each subpage still con-
tains 8.5 MB of data! As a result, reading a subpage amounts to a
sequential scan of 8.5 MB of data, which is typically very fast on
disk. To process the SQL query mentioned above, it is then suf-
ficient to read the subpage containing data for attribute url only.
Then, for the qualifying tuples, we only need to access data from
the subpages containing the sourceip. For this, we may scan that
subpage entirely or elevator-scan the subpage skipping some parts
in the scan. In either case, we do not trigger any network requests
to fetch missing attributes. All data is local within the data block.
Different Layout Performance in MapReduce. Figure 2 shows
the comparison of the estimated access cost of running a MapRe-
duce job on each of the Row, Column, and PAX Layouts. Ad-
ditionally, we consider the Optimal Layout, which co-locates all
attributes referenced by any incoming query into a single column
group. We use a query referencing a single input table of 30 at-

tributes. Our cost model considers random and sequential I/O, net-
work, and even the scheduling decisions made by the MapReduce
scheduler (see Appendix A for details of the cost model and this
simulation). The results in Figure 2 show that Column Layout is
not competitive compared to PAX Layout in MapReduce in a dis-
tributed setting. This is due to the high costs for fetching missing
attribute values over the network as explained above. We also ob-
serve that PAX Layout is better than Row Layout for up to 17 (out
of 30) referenced attributes. Beyond that, PAX Layout is worse
than Row Layout, because the number of individual seeks in PAX
adds considerable random I/O due to buffered reads of the individ-
ual subpages. In addition, tuple reconstruction in PAX adds con-
siderable CPU costs. Even if PAX Layout seems to perform well
in many cases, we observe that there exists a big gap between PAX
Layout and Optimal Layout. This is because the Optimal Layout
always groups all referenced attributes together, thereby requiring
fewer seeks and no tuple reconstruction. Therefore, it is quite im-
portant for the performance of applications to pack as many refer-
enced attributes as possible co-located together.

1.2 Our Approach and Research Challenges
In this paper, we propose a new approach coined Trojan Lay-

out. Like PAX, Trojan Layout keeps the same data inside a block.
However, in contrast to PAX, we allow for any internal data layout
inside a block. The possible improvement of Trojan Layouts over
PAX is depicted by the red space in Figure 2. Interestingly, we al-
ready see an improvement of ∼270% over Column Layout and of
∼20% over Pax Layout for five referenced attributes.

Additionally, we exploit the existing data block replication in
Hadoop DFS (HDFS) to create different Trojan Layouts on a per-
replica basis. This means that rather than keeping all data block
replicas in the same layout, we use different Trojan Layouts for
each replica. Each replica is optimized for a different subclass of
queries. As a result, every incoming query can be scheduled to the
most suitable data block replica. In a special case this would ef-
ficiently mimic fractured mirrors [28], which maintain two copies
of the data: one in Row Layout and other in Column Layout. The
reader may think that this is also possible in HDFS by using pure
Row and Column Layouts. However, doing so would significantly
impact the fault-tolerance properties of HDFS, because a data block
replica would not contain the same data in Row Layout as in Col-
umn Layout. Therefore, complex mechanisms would be required
to identify, track, and reconstruct lost data block replicas.

The idea of Trojan Layouts triggers a number of interesting re-
search challenges. First, we have to cluster a given workload into
query groups based on their access pattern in order to better exploit
different data block replicas. Second, we need to invent efficient al-
gorithms to determine the right Trojan Layout for each data block
replica. Although some existing work from vertical partitioning
may be leveraged [16, 5, 17], these algorithms have issues. They
have to be extended to (i) improve the quality of vertical partition-
ing, and (ii) support replicas of the same block in different layouts.
Third, we should not force users into manually defining data block
layouts. If we did that, we might eventually end up turning MapRe-
duce into yet another DBMS, with a few hundred different knobs
to be properly set by a skilled (and expensive) database administra-
tor. However, the ease-of-use and the low administration costs of
MapReduce are some of its biggest advantages over DBMSs.

Therefore, the main problem we tackle in this paper is as follows.
Given an incoming query workload, we have to determine the right
Trojan Layout for each data block replica that: (i) approaches to
optimal layouts in performance, (ii) keeps the interface of MapRe-
duce intact, and (iii) is zero-admin, which is extremely important

2

for future distributed systems as emphasized in the conclusion sec-
tion of the ten-year best paper award of Surajit Chaudhuri [10].

1.3 Contributions
Trojan Layouts are inspired by PAX in the sense that we only

change the internal organization of a data block and not among
data blocks. However, we considerably depart from PAX as we
can: (i) co-locate attributes together according to query workloads,
(ii) use different Trojan Layouts for different data block replicas,
and (iii) in a special case, mimic fractured mirrors: having the best
from both PAX and Row Layouts. In summary, we make the fol-
lowing key contributions:

1. We propose a column grouping algorithm in which we first
(i) determine column groups using a novel interestingness
measure, which denotes how well a set of attributes speeds
up most or all queries in a workload; and then (ii) pack the
column groups in order to maximize the total interestingness
of data blocks. We use this algorithm as a basis to determine
the Trojan Layout of data blocks in HDFS. It is worth noting
that even if we focus on MapReduce in this paper, one can
use our column grouping algorithm in other domains as well.

2. We exploit default HDFS data replication to create a differ-
ent Trojan Layout per data block replica. For this, we first
show how to apply our column grouping algorithm for query
grouping as well, i.e. for clustering queries in a workload ac-
cording to their access patterns. We then map each resulting
query group to one data block replica so as to compute the
Trojan Layout for such a replica.

3. We present Trojan HDFS, a (per-replica) Trojan Layout
aware HDFS. At data upload time, Trojan HDFS automat-
ically transforms data block replicas into their correspond-
ing Trojan Layouts; it hides all messy details from the user.
Thereafter, Trojan HDFS keeps track of Trojan Layouts for
each data block replica. With Trojan HDFS, neither the
MapReduce processing pipeline nor the MapReduce inter-
face are changed at all.

4. We evaluate Trojan Layouts using three real-world work-
loads: TPC-H, Star Schema Benchmark (SSB), and Sloan
Digital Sky Survey (SDSS). The results demonstrate that
Trojan Layouts allow MapReduce jobs to read data up to a
factor of 4.8 faster than Row Layout and up to a factor of 3.5
faster than PAX Layout.

2. OVERVIEW
We propose Trojan Layouts as our solution to decrease the wait-

ing time of data-intensive jobs when accessing data from HDFS.
The core idea of Trojan Layouts is to internally organize data
blocks into column groups according to the workload. Our ap-
proach has three phases: (1) compute the Trojan Layout for each
data block replica, (2) create the computed Trojan Layouts in
HDFS, and (3) access the existing Trojan Layouts. From the user
perspective, the data analysis workflow remains the same: upload
the input data and run the query workload exactly as before.

Given a query workload W, at upload time we determine the
Trojan Layout for each data block replica. We then store each
data block replica in its respective Trojan Layout. We illustrate
the core idea of Trojan Layouts in Figure 3. A data block using a
Trojan Layout is composed of Header metadata and a set of col-
umn groups (see Replica 1 in data node 1). The header contains the
number of attributes stored in a data block and attribute pointers.

... B D A G H C E F

... A B H C D F E G

... H A B D E F C G

Data Block 42 Replica 2

Data Block 42 Replica 3Data Block 42 Replica 1

Query Workload W

data node 1

data node 3

data node 2

Column Group 1Pointers Column Group 2

Attributes

Header Data

job tracker

Q1 & Q3

Q4

Q2

Figure 3: Per-replica Trojan Layouts in HDFS.

An attribute pointer points to the beginning of the column group
that contains that attribute. For instance, in Replica 1, the first at-
tribute pointer (the red arrow) points to Column Group 2, which
contains attribute A. The second attribute pointer would then point
to Column Group 1, and so on. Each column group in turn contains
a set of attributes in row-fashion, e.g. Column Group 1 in Replica 1
has tuples containing attributes B and D.

At query time, we transparently adapt an incoming MapReduce
job to query the data block replica that minimizes the data access
time. Then, we route the map tasks of the MapReduce job to the
data nodes storing such data block replicas. For example, in Fig-
ure 3, the map tasks of Q4 are routed to data node 1, while the map
tasks of Q1 and Q3 are routed to data node 2 and those of Q2 are
routed to data node 3. Notice that in case the scheduler cannot route
a map task to the best data block replica, e.g. because the data node
storing such a replica is busy, the scheduler transparently fallbacks
to other Trojan Layouts. An important feature of our approach is
that we keep the Hadoop MapReduce interface intact by providing
the right itemize function in the Hadoop plan [14]. As in normal
MapReduce, users only care about map and reduce functions.

The salient features of our approach are as follows:

• Invisibility. We create and access Trojan Layouts in a way
that is invisible to users.

• Non-Invasive. We do not change the outside HDFS unit, i.e.
the data block, but rather change the internal representation
of a data block. As a result, we do not require any change
in the MapReduce processing pipeline for accessing Trojan
Layouts.

• Seamless Query Processing. We seamlessly wrap the input
data to a given MapReduce job. Obviously, we do this for
the data block replica that minimizes the time for reading
required data.

• Rich DBMS features support. One can easily enrich Trojan
Layouts with standard DBMS optimizations, such as index-
ing, partitioning, and co-partitioning.

• Per-Replica Trojan Layout: We exploit existing data block
replication in HDFS to create a different Trojan Layout for
each replica so as to better fit to the workload.

We provide the details on how we compute Trojan Layouts in
Section 3. Then, in Section 4, we describe how we enable HDFS to
store each data block replica in a different Trojan Layout in Trojan
HDFS. In the same Section 4, we discuss how we physically create
Trojan Layouts. In addition, we discuss the query processing and
scheduling aspects of our approach.

3

3. INTERESTINGNESS-BASED COLUMN
GROUPING ALGORITHM

The core idea of Trojan layouts is to adapt the internal represen-
tation of data blocks, while the outside view of data for the rest
of the data processing pipeline remains the same. This speeds up
query execution. Since we focus on scan and projection operators
in the query plan, we restrict ourselves to attribute level data adap-
tation, i.e. group sets of attributes together. Given a relation with
attribute set A, we consider a column group G ⊆ A as any subset
of A. To understand the intuition behind column grouping, let us
consider the queries and their access pattern in Example 1 below.

Example 1. Access pattern of attributes A,B,C,D in queries Q1–Q10.

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10
A 1 1 1 1 0 0 0 0 0 0
B 1 1 1 1 0 0 0 0 0 0
C 0 0 0 0 1 1 1 1 1 1
D 0 1 1 1 1 1 1 1 1 1

In the above table, if a query accesses an attribute, then the cor-
responding cell has value 1, otherwise it has value 0. Notice that
attributes A and B are co-accessed in queries Q1 to Q4 (in Q1 to
Q4 of Example 1). Thus, column group {A,B} is interesting as it
can speedup queries Q1 to Q4. As another example, consider the
queries and their access pattern in Example 2 below.

Example 2. Access pattern of attributes M,N,O,P in queries Q11–Q20.

Q11 Q12 Q13 Q14 Q15 Q16 Q17 Q18 Q19 Q20
M 1 1 0 0 0 0 0 1 1 0
N 1 1 1 0 0 0 0 1 1 1
O 0 1 1 0 0 0 0 0 1 1
P 1 1 0 1 1 1 1 0 0 0

Observe that attributes M,N and N,O are co-accessed respec-
tively in queries {Q11,Q12,Q18,Q19} and {Q12,Q13,Q19,Q20} (in
Example 2). This makes column group {M,N,O} an interesting
one. Thus, generally speaking, a column group is interesting if
pairs of attributes in the column group are co-accessed (e.g. M,N
and N,O in Example 2), even though all attributes in the column
group may not be co-accessed. Consequently, in order to find the
most suitable internal representation of data in data blocks, we fo-
cus on two core operations: (i) determining the interesting column
groups, and (ii) packing them within a data block such that the total
interestingness of the data block is maximized. Denoting a set of
complete and disjoint column groups as G′, where G′ is a subset of
the set of all possible column groups G, we can now describe the
problem we address as follows:

Problem Statement. Given a column group interestingness func-
tion Intg(G)→ [0, 1], find the complete and disjoint column group
set G′ that maximizes the total interestingness of a data block, i.e.
max

(∑
∀G∈G′ Intg(G)

)
.

To approach the above problem, we first describe our novel col-
umn group interestingness function and compare its effectiveness
with prior approaches below. Thereafter, we map the packing of
column groups, which is an NP-hard problem [29], to a 0-1 Knap-
sack problem and solve it using a branch and bound technique.

3.1 Column Group Interestingness
Intuitively, a column group is highly interesting if it speeds up

most or all of the queries in the workload. Thus, to formally de-
fine the interestingness of a column group, we first consider the

access costs of queries in query workload W. Let Path(Opt,Q) de-
note the access path chosen by optimizer Opt for query Q and let
BA(Q,Path(Opt,Q)) denote the number of bytes of attribute A read
by query Q when using access path Path(Opt,Q)1. We denote the
total bytes consumed by a query Q as its footprint FQ:

FQ =
∑
A∈A

BA(Q,Path(Opt,Q)).

Let us now understand which attributes contribute to the query
footprint. For this, traditionally e.g. [5], one would use an attribute
usage matrix U(Q, A) to indicate whether or not an attribute A is
referenced by query Q, i.e U(Q,A)=1, if Q references A, and 0
otherwise. However, U(Q, A) considers only the attribute occur-
rences (in Example 1), even though attribute non-occurrences
give equally important information: they are crucial in determin-
ing whether one attribute should co-occur with another or not. For
instance, in Example 1, attributes C and D have common non-
occurrence only in query Q1 whereas for queries Q2–Q4 column
group {C,D} will have redundant access of C (). In contrast, at-
tributes A and B have all non-occurrence in common (queries Q5–
Q10) and therefore column group {A,B} is more interesting. To
capture this, we generalize U(Q, A) using a binary variable x, which
denotes the occurrence (x = 1) and the non-occurrence (x = 0) of
an attribute.

Ux(Q, A) =

U(Q, A) if x=1,
1 − U(Q, A) if x=0.

Notice that the above usage matrix does not take into account the
footprints (total byte access) of queries in which they occur.

Example 3. footprint and attribute usage in queries Q1 to Q4.

Query footprint
Q1 10
Q2 20
Q3 30
Q4 40

Q1 Q2 Q3 Q4
A 1 1 0 0
B 0 0 1 1
C 0 1 0 1

For instance, in Example 3, attributes A,B,C have the same fre-
quency in the workload. However, attributes A,C are co-referenced
by the cheaper query Q2 (i.e. having smaller footprint) whereas
attributes B,C are co-referenced by more expensive query Q4

(i.e. having bigger footprint), thereby making B,C more likely to
be together. Therefore, we introduce the relative importance (RI)
of attributes, which takes query footprints into account. Intuitively,
RIA is the fractional reading cost in the events when an attribute A
occurs as well as when it does not. We define RIA as follows:

RIA(x) =

∑
Q∈W FQ · Ux(Q, A)∑

Q∈W FQ
.

RIA is normalized by the total workload costs to make it compara-
ble. Since we want to co-locate attributes inside data blocks, we
need to determine whether two attributes should be stored together.
Thus, we also define RIA,B(x, y) as the relative importance of an
attribute pair A, B in terms of the query workload cost.

RIA,B(x, y) =

∑
Q∈W FQ · Ux(Q, A) · Uy(Q, B)∑

Q∈W FQ
.

1The choice of the access path depends on the optimizer, which
can choose either the index access path or the table scan access
path. For instance, the optimizer can come up with the access path
reading lesser number of bytes. Without any loss of generality, one
can supply other Path(Opt,Q) functions to our algorithm.

4

Now, to estimate the similarity between two attributes A and B
over the range of values of x and y, we measure their mutual de-
pendence using the mutual information [21] between them. We
can compute the mutual information between two attributes using
their relative importances as follows:

MI(A, B) =
∑

x∈{0,1}

∑
y∈{0,1}

RIA,B(x, y) · log
(

RIA,B(x, y)
RIA(x) · RIB(y)

)
.

Essentially, MI(A, B) measures the information (data access pat-
terns) that attributes A and B share. We normalize MI(A, B) by
the minimum entropies of the two attributes to normalize its range
between 0 and 1, i.e. nMI(A, B) =

MI(A,B)
min(H(A),H(B)) . Here, H(A) and

H(B) denote the entropy of attributes A and B. For an attribute
A, we compute its entropy as: H(A) =

∑
x∈{0,1} RIA(x) · log

(
1

RIA(x)

)
.

Finally, we can define column group interestingness.

Definition 1. Column Group Interestingness of a column
group G is the average normalized mutual information of any given
attribute pair in G. Formally,

Intg(G) =


1

(|G|2)
·

∑
{A,B}∈G,A,B

nMI(A, B) |G| > 1,

1
|A|−1 ·

∑
A∈G,B∈A\G

1 − nMI(A, B) |G| = 1.

�

Note that for column groups having a single attribute, we take the
inverse of the mutual information with any other attribute in A.
In other words, we measure the benefit of the attribute in the col-
umn group not occurring with any other attribute in A. Intg(G) has
values between 0 and 1. Higher interestingness indicates higher
mutual dependence within a column group.

By default, we would have to consider all column groups
(O(2|A|)) within a data block. In practice, we use the similar prun-
ing method as in [5] in order to reduce the search space. We exper-
imentally determine the threshold interestingness value and discard
all column groups having interestingness below that threshold. A
higher interestingness threshold produces a smaller set of candidate
column groups. This has two consequences: (i) the search space for
finding the best combination of column groups (introduced as col-
umn group packing in Section 3.2) becomes smaller, and (ii) only
the attributes appearing in highly interesting column groups remain
in the candidate set and are thus likely to be grouped. All remaining
attributes which do not appear in any of the highly interesting col-
umn groups will end up in row layout. Apart from threshold based
pruning, we can perform further aggressive pruning, for column
groups having same interestingness value, in two ways: (i) keep the
smallest column group to reduce redundant data read, or (ii) keep
the largest column group to reduce tuple reconstruction costs.
Comparison with CG-Cost [5]. It is important to note that, in
contrast to [5], our definition of interestingness produces superior
interestingness measure, which we illustrate as follows. The al-
gorithm in [5] computes the interestingness (CG-Cost) for column
groups {A,B} and {C,D} in Example 1 as 0.4 and 0.6 respectively.
Our algorithm computes interestingness (Intg) as 1.0 and 0.23 re-
spectively, which makes much more sense since A and B always
occur/not-occur together. Likewise, the algorithm in [5] computes
the interestingness for both column groups {M,N,O} and {M,P} in
Example 2 as 0.2. Our algorithm computes interestingness (Intg) as
0.278 and 0.005 respectively. Again, this makes more sense since
{M,N} and {N,O} are pairwise similar making group {M,N,O}
more interesting.

{A,B}

{A,B} {A,D} {A,B} {C,D}

{A,B}
{C,D} {C}

{A,B}
{C,D} {E}

Bound

Bound

knapsack 1

knapsack 2 knapsack 3

knapsack 4 knapsack 5

Figure 4: Branch and Bound

3.2 Column Group Packing as 0-1 Knapsack
Problem

Once we have the candidate column groups along with their in-
terestingness values, our goal now is to pack these column groups
into a data block such that the total interestingness of all column
groups in the data block is maximized. As mentioned before, this
is an NP-hard problem [29]. Thus, we map it to a 0-1 knapsack
problem, with an extra disjointness constraint, to solve it.

For a given column group G, let id(G) denote the group identifier
(a numeric in binary representation) such that its ith bit is set to 1
if G contains attribute i, it is set to 0 otherwise. Given m column
groups, we have to find 0-1 variables x1, x2, ..., xm — where xi is 1 if
column group Gi is selected and 0 otherwise — such that the total
interestingness is maximized. Additionally, the sum of the group
identifiers should be at most id(A) and each of the groups should
be disjoint. Formally, max

∑m
i=1 Intg(Gi) · xi subject to:

m∑
i=1

id(Gi) · xi ≤ id(A) (1)

xi + x j ≤ 1, ∀i, j s.t. i , j ∧ Gi ∩G j , ∅. (2)

Here, (2) is an extra constraint to the standard 0-1 knapsack
problem. Due to this additional constraint we cannot reduce the
problem to a sub-problem. This is because the solution to the sub-
problem may contain items which are not disjoint in the main prob-
lem. Thus, we cannot use a dynamic programming algorithm to
solve this problem. However, constraint (2) allows us to pre-filter
non-disjoint column groups. Therefore, we can apply a branch and
bound technique. The idea is to consider a column group and its
subsequent combinations with other column groups, only if it is
disjoint with the column groups currently in the knapsack. Fig-
ure 4 illustrates this idea. We observe that column groups {A,D}
and {C} bound any further branching of knapsack iterations. Al-
gorithm 1 shows the pseudo-code of this technique. The algorithm
denotes a column group as a knapsack item, its interestingness as
the benefit, and its group identifier as weight. In case we have ex-
plored all knapsack items, we check if we have a knapsack with
greater benefit than before (Lines 1-10). Else, we recursively call
CG.bbKnapsack in two cases: (i) without taking the current item
into the knapsack (Line 12), and (ii) taking the current item if it
satisfies constraints (1) and (2) (Lines 13–15).

It is worth noting that our interestingness function does not con-
sider the size of the column group. However, for operators such as
joins, the number and sizes of column groups would be quite im-
portant. Thus, we solve the above problem each for the number of
column groups ranging from 1 to |A|, as shown in Algorithm 2. We
first generate the column groups (Line 1) and add them to the item
list (Line 2), then we set the weight (group identifier) and benefit
(interestingness) of each item (Lines 4–8). We set maxWeight to
the maximum item weight and call CG.bbKnapsack, which returns
a column group set each for the number of groups ranging from 1

5

Algorithm 1: Branch And Bound Knapsack:CGA.bbKnapsack
Input : item, benefit, weight, weightVector, itemBitMap
Output: Max benefit item vectors, each for #column-groups from 1 to A

if EndOfItemList(item) then1
k = NumItems(itemBitMap);2
if weight < MaxWeight then3

k = k+1;4
end5
if k > 0 and benefit > MaxBenefit(k) then6

CGA.SetMaxBenefit(k,benefit);7
CGA.SetMaxBenefitItemBitMap(k,itemBitMap);8

end9
else10

CGA.bbKnapsack(NextItemInList(item), benefit, weight, weightVector,11
itemBitMap);
if (weight & ItemWeight(item))==0 and (weight + ItemWeight(item)12
≤ MaxWeight) then

CGA.bbKnapsack(NextItemInList(item),13
benefit+ItemBenefit(item), weight+ItemWeight(item),
weightVector | ItemWeight(item), itemBitMap |
ItemVector(item));

end14
end15

Algorithm 2: EnumerateAndGroup
Input : Items items
Output: Group[][] itemGroupings

Group [] candidates = GetSubsets(items);1
CGA.SetItemList(candidates);2
maxWeight = 0;3
for i=1 to size(candidates) do4

maxWeight = maxWeight | (1 << i);5
CGA.SetItemWeight(candidates[i], v(candidates[i]));6
CGA.SetItemBenefit(candidates[i], I(candidates[i]));7

end8
CGA.SetMaxWeight(maxWeight);9
Group [][] groupings = CGA.bbKnapsack(0,0,0,0,0);10
return groupings;11

to |A|. As the number of solutions is equal to the number of at-
tributes in the relation, it is now feasible to compare and pick the
best partitioning using a cost model (see Appendix A).

Our column grouping algorithm, along with column group prun-
ing, works well for several realistic datasets, e.g. for TPC-H tables
(having a maximum of 16 attributes) and for SSB tables (having
a maximum of 17 attributes). However, finding the right Trojan
Layouts for scientific data sets (having hundreds of attributes), like
SDSS, becomes a difficult task to achieve. Luckily, HDFS repli-
cates data blocks three times by default to ensure the availability of
data blocks. Thus, instead of using the same data layout for all the
three replicas, we create a different Trojan Layout per replica. This
divide-and-conquer approach significantly reduces the complexity
of our column grouping algorithm. We describe per-replica Trojan
Layout in the following section.

4. PER-REPLICA TROJAN LAYOUT
In this section, we describe our novel per-replica Trojan Layouts.

The core idea of per-replica Trojan Layout is to first create query
groups (using the same column grouping algorithm) and then cre-
ate column groups for each query group separately. This serves
two purposes: (i) instead of creating a single layout for the entire
workload, we create multiple layouts, each specialized for a part
of the workload, and (ii) query grouping can significantly decrease
the number of referenced attributes for each query group, which,
in turn, reduces the complexity of our column grouping algorithm.
Algorithm 3 shows the pseudo-code to compute per-replica Trojan
Layouts in two steps:

Algorithm 3: PerReplicaEnumerateAndGroup
Input : Query[] queries, Attribute[] attributes, Int replicationFactor
Output: Group[][] perReplicaGroupings

Group [][] queryGroupings = EnumerateAndGroup(queries);1
Group [] queryGrouping = queryGroupings[replicationFactor];2
Group [][] perReplicaGroups;3
for i=1 to size(queryGrouping) do4

Attribute [] refAttributes = GetRef(queryGrouping[i]);5
Group [][] attrGroupings = EnumerateAndGroup(refAttributes);6
perReplicaGroups[i] = PickBestUsingCostModel(attrGroupings);7

end8
return perReplicaGroups;9

(1.) Query Grouping. We first group queries in the workload
based on their access pattern. Notice that column grouping is or-
thogonal to query grouping. However, two queries are similar if
they access similar attributes just as two attributes are similar if they
are accessed by similar queries. In that respect, query grouping,
or rather partitioning, is very similar to column grouping. There-
fore, we use our column grouping algorithm (Algorithm 2) for
query grouping as well: we just interchange attributes with queries
(Line 1). To illustrate, in the attribute usage matrix of Example 1 in
Section 3, query group {Q1,Q2,Q3} has an interestingness of 0.49
whereas query group {Q2,Q3,Q4}, having queries with more sim-
ilar access pattern, has an interestingness of 1.0. As a result of
running Algorithm 2 for query grouping, we receive a collection of
query group sets that are complete and disjoint. Each query group
set in the collection contains a different number of query groups.
We pick the query group set having as many query groups as the
replication factor (Line 2), thus mapping one query group to one
data block replica. However, we can as well map one query group
to multiple replicas, depending on the workload.

Recall that we perform query grouping in order to reduce the
complexity of our column grouping algorithm. However, if the
number of queries increase then the complexity of query group-
ing will increase as well. To deal with this, for large workloads, we
apply query grouping recursively as follows: (i) first we (indepen-
dently) group consecutive sets of p queries, (ii) then we XOR the
queries in a query group to represent each query group as a single
combined query, (iii) now we again (independently) group consec-
utive sets of p combined queries, (iv) we repeat this process till we
have a single set of p or less queries. Here p denotes the maxi-
mum number of queries which can be grouped in reasonable time.
Experimentally, we determine p to be less than or equal to 20.

(2.) Query Routing. Finally, for each query group, we get the ref-
erenced attributes and build column groups on them (Lines 5–6 in
Algorithm 2). We pick the best column grouping among groupings
of different size using a cost model2 (Line 7).

In the remainder of this section, we discuss how we support per-
replica Trojan Layouts in HDFS (Section 4.1); how we transform
data blocks to a given Trojan Layout (Section 4.2); how we access
Trojan Layouts in Hadoop MapReduce jobs (Section 4.3); and what
scheduling policies we consider (Section 4.4).

4.1 Layout Aware Replication
We implemented a variant of HDFS, called Trojan HDFS, to in-

troduce per-replica Trojan Layouts into HDFS. Trojan HDFS dif-
fers from HDFS in two aspects:

(1.) The name node in Trojan HDFS keeps a catalog of the Trojan
Layouts of all data block replicas. Trojan HDFS exploits the fact
that the name node maintains a triplet of pointers for each data
2See Appendix A for details of the cost model.

6

Replica 1

Replica 2

Replica 3

A B C D E F

A B C D E F

Trojan Layout 1

Trojan Layout 2

F B D E C A
Trojan Layout 3

CG1

CG1 CG2 CG3 CG4 CG5 CG6

CG1 CG2 CG3

BlockInfo (BI) for data block 42 Trojan Layout descriptors

BI36

BI41

BI21

CG = Column Group
DN = Data Node
BI = BlockInfo

Abbreviation:

BI42

BI50

BI51

BI43

DN7

DN1

DN2

Friday, April 29, 2011

Figure 5: Quadruplets for a data block in Trojan HDFS stored
at the name node. This structured is composed: (i) of a pointer
to the data node (e.g. DN 7) storing a replica (e.g. the first
replica) of a data block (e.g. data block 42), (ii) of a pointer
to the previous data block (e.g. data block 21) stored on DN 7,
(iii) of a pointer to the next block (e.g. data block 51) stored on
DN 7, and (iv) of a pointer to the Trojan Layout descriptor for
that data block replica (e.g. row-layout).

block replica3. It adds a fourth pointer to this structure, which
points to the Trojan Layout descriptor of the data block replica.
Figure 5 illustrates this quadruplet of pointers associated to a data
block replica. Note that more than one data block replica could
point to the same Trojan Layout descriptor.
(2.) A data node in Trojan HDFS asks the name node for the Tro-
jan Layout of each data block replica stored locally. After receiving
the Trojan Layout for a given data block replica, a data node inter-
nally reorganizes the data of the data block replica according to
the received layout. There are two ways, for a data node, to do so:
(i) reorganize a data block as soon as the data block replica is copied
locally, or (ii) reorganize a data block after all replicas of the data
block are copied to relevant data nodes. The reader might think the
first strategy to be better, since data nodes do not have to wait for
other replicas to be copied. However, this strategy generates con-
tention between data nodes for accessing data block replicas. This
is because a data node would be accessing a given local data block
replica for transformation while another data node would be trying
to remotely copy the same data block replica for replication. This
contention will, in turn, significantly increase the data upload time.
Therefore, in Trojan HDFS, we apply the second strategy, i.e. data
nodes start data block reorganizations after all replicas are copied.
We showed an example of the resulting internal organization of a
data block in Figure 3.

4.2 Layout Creation
We now focus on the process of uploading a file to TrojanHDFS.

In a spirit similar to databases physical design wizards, users have
to run our Trojan Layout Wizard (TLW) to come up with the Tro-
jan Layouts for their data sets. For this, users feed the TLW with
the query workload, the schema of their data sets, and the replica-
tion factor they will use to store their data sets. Given these inputs,
TLW computes the per-replica Trojan Layouts and returns a lay-
out configuration file. The layout configuration file contains, for
each data set, a row having data set name and per-replica Trojan

3In this triplet (i) the first pointer points to the metadata of the node
storing the data block replica, (ii) the second pointer points to the
previous data block stored on the same data node, and (iii) the third
pointer points to the next data block stored on the same data node.

cl
ie

n
t

n
o
d
e

data node 3data node 2data node 1

(1)
 & (5

a)

(3)

(5b)

(4)

(5c)
(6b)

(7b) (7c)Block 1 Block 1 Block 1 Block 1Block 1 Block 1(7a) Block 1

name node

(2)
 & (6

a)

Block 1

(6c)

Figure 6: Process to upload a file to Trojan HDFS

Layouts ids. As an example, the layout configuration file for TPC-
H Customers, TPC-H Lineitem, SSB LineOrder, and SDSS
PhotoObj can be as follows:

TPC-H_Customers: Row | Column | Customer_column_grouped
TPC-H_Lineitem: Row | Column | Lineitem_column_grouped
SSB_LineOrder: Row | Column | LineOrder_column_grouped
SDSS_PhotoObj: Row | Column | PhotoObj_column_grouped

The layout ids (e.g. Customer_column_grouped) in the above
layout configuration file is mapped to actual attributes in a sepa-
rate file. Users simply upload the layout configuration file into a
predefined directory in Trojan HDFS. At start up, the name node
loads the layout configuration file into main memory. After this,
the users can upload their data files into Trojan HDFS exactly as in
standard HDFS. Internally, Trojan HDFS takes care of storing data
block replicas in their respective Trojan Layouts, hiding all messy
details from the users.

Figure 6 depicts the upload process with a replication factor of
3. For simplicity, we assume in Figure 6 that the data set to up-
load contains only a single data block. The idea is that as soon
as all replicas of a data block are copied, the data nodes internally
reorganize replicas according to their assigned Trojan Layout. In
detail, the uploading process has the following steps: (1) the client
node (e.g. data node 1) asks the name node to register a data block
(e.g. data block 1); (2) the name node returns the set of data nodes
to hold the three data block replicas (e.g. data nodes 1, 2, and 3);
(3) after storing data block 1 locally, data node 1 sends a replica to
data node 2; (4) data node 2 stores data block 1 locally and sends a
replica to data node 3, which in turn also stores data block 1 locally;
(5a)–(5c) each data node then informs the name node of the newly
received data block 1; (6a)–(6c) the name node returns the Trojan
Layout corresponding to the data block replica stored by each data
node; (7a)–(7c) finally, each data node transforms data block 1 into
its respective Trojan Layout. In case a user uploads a data set that
is not in the layout configuration file, the name node asks the data
nodes to keep the data layout unchanged (typically row layout).

4.3 Query Processing
To process an incoming MapReduce job, we first identify which

attributes need to be read. We then use a cost model (Appendix A)
to automatically pick the best Trojan Layout in Trojan HDFS for
the MapReduce job. Then, we schedule map tasks to those data
nodes storing data block replicas in the best Trojan Layout (given
by the cost model). We provide an itemize UDF [14] to the map tasks
so that they can read only the referenced attributes and reconstruct
tuples, all invisible to the users.

Algorithm 4 shows the itemize.initialize method for en-
abling a map task to transparently read referenced attributes from
data blocks and automatically reconstruct tuples as expected by ap-
plications (MapReduce jobs). To do so, we first get the required
attributes from the job configuration (Line 1). Then, we read the

7

Algorithm 4: Trojan Layout itemize.initialize UDF
Input: FileSplit split, Configuration job

Set ReferencedAttributes = job.getRefAtts();1
Global FileSplit split = split;2
Header h = ReadHeader(split);3
Set GroupedData, ReadGroups = ∅;4
Global StringBuilder attributeOrder = new StringBuilder ();5
foreach attribute in h.getAttributes() do6

if ReferencedAttributes.contains(attribute) then7
if !ReadGroups.contains(attribute.getStartOffset()) then8

GroupedData.add(new Group9
(split.readfully(attribute.getStartOffset(),
attribute.getEndOffset())));
ReadGroups = attribute.getStartOffset();10

end11
attributeOrder.append (attribute.getPosition() + ",");12

end13
end14

header of a data block (Lines 2–3). The header information al-
lows us to know the column groups that contains the referenced at-
tributes (relevant column groups). We upload such relevant column
groups into main memory (Line 6–10). Additionally, we keep track
of the position of each referenced attribute so as to allow a map
function to know how attributes are ordered in a tuple (Line 12).
Now, to feed tuples to the map function, we simply iterate over each
column group and check if a column group has more tuples. If so,
we reconstruct the tuple from relevant column groups and pass it to
the map function. Otherwise, we signal the end of tuples.

4.4 Scheduling Policies
By default, the Hadoop MapReduce scheduler tries to allocate

map tasks to those data nodes having any replicas of the requested
data block locally. However, with per-replica Trojan Layouts,
scheduling map tasks to data nodes having different data block
replicas may have quite different performance. For example, a
MapReduce job requiring one attribute out of 16 would be a way
faster to complete if the input data set is in column-layout. There-
fore, to query per-replica Trojan Layouts, we always schedule map
tasks to those nodes storing the best Trojan Layout (Best-Layout
policy, for short). This policy is reasonable because in practice,
if map tasks are slightly delayed [33], only 1% of map tasks need
to fetch the best layout anyways. Still, in case of contention, we
might end up delaying several map tasks with the Best-Layout
scheduling policy. To avoid this delay, there could be two more
scheduling policies to allocate these map tasks: (i) schedule map
tasks to available nodes even if they do not store the best Tro-
jan Layout; later, map tasks fetch data blocks with the best lay-
out (Fetch Best-Layout policy), and (ii) schedule map tasks
to those nodes storing the second best Trojan Layout; later, map
tasks read the local data blocks (2nd Best-Layout policy). Both
Fetch Best-Layout and 2nd Best-Layout scheduling policies
avoid delaying map tasks. However, Fetch Best-Layout policy
now incurs networks costs to fetch the best layout whereas 2nd
Best-Layout policy affects the data access performance.

We experimentally compare these three scheduling policies in
Section 5.5.

5. EXPERIMENTAL EVALUATION
We implemented our ideas on top of HDFS 0.20.3. We evaluate

the performance of Trojan Layouts and compare it with Hadoop
MapReduce 0.20.3 using Row Layout (Hadoop-Row) and PAX
Layout (Hadoop-PAX). We ran our experiments with two main ob-
jectives in mind: (i) to show that the use of Trojan Layouts allows

us to significantly improve data access performance, and (ii) to
evaluate the effectiveness of our column grouping algorithm.

5.1 Testbed
We ran all our experiments on a physical 10-node cluster where

each physical node runs five virtual nodes, using Xen virtualization,
i.e., resulting in a total of 50 virtual nodes. Node virtualization is
also used by Amazon to scale up its clusters. However, we showed
that Amazon EC2 suffers from high variance in performance [30].
Therefore, running the experiments on our cluster allows us to get
more stable results. Each physical node in our cluster has one
2.66 GHz Quad Core Xeon running 64-bit platform Linux open-
Suse 11.1 OS, 4x4 GB main memory, 6x750 GB SATA hard disks,
and three Gigabit network cards. We set each virtual node to have a
physical 750 GB hard disk and physical 3.2 GB main memory. The
physical nodes are connected with a Cisco Catalyst 3750E-48PD,
which uses two Gigabit Ethernet ports for each node in channel
bonding mode. From now on, we refer to virtual nodes as nodes
for clarity. We used Hadoop 0.20.3 running on Java 1.6 for all our
experiments. We used Trojan HDFS to store input datasets, re-
call that Trojan HDFS is a variant of HDFS that supports different
data layouts per-replica (see Section 4.2). We made the following
three changes to the default HDFS settings: (i) we store data into
Trojan HDFS using 256MB data blocks as in [14], (ii) we allow
Hadoop to reuse the task JVM executor instead of restarting a new
process per task, and (iii) we allow a node to concurrently run two
map tasks and a single reduce task.

5.2 Datasets and Benchmarks
To better validate Trojan Layouts, we used three real-world

datasets and benchmarks: TPC-H, Star Schema Benchmark (SSB),
and the Sloan Digital Sky Survey4 (SDSS).
TPC-H. We generated data for the Customers and LineItem ta-
bles using the TPC-H DBGEN data generator tool. We used a scale
factor of 1, 000 to generate 50 files of data, which results into a to-
tal of 23.74 GB for the Customers table and into a total of 759 GB
for the LineItem table. Since TPC-H Customers table appears in
only eight queries of the TPC-H benchmark, we consider only the
first eight queries of all other tables as well.
SSB. We generated data for LineOrder table using the SSB DBGEN
tool. We used a scale factor of 1, 000 to generate 50 files of data,
which results into a total of 600 GB in total. We consider the first
eight SSB queries, i.e. we use all three variants of the first two
queries and the first two variants of the third query.
SDSS. We used ∼50 GB of real-world data provided by SDSS for
the PhotoObj table. As for TPC-H and SSB, we consider the first
eight relevant SDSS queries. Notice that the PhotoObj table has
446 attributes in total. However, to be fair to Hadoop Row, for
all three systems we consider only those 46 attributes which are
referenced by our SDSS benchmark queries.

5.3 Methodology
We first evaluate how well Trojan Layouts allow MapReduce

jobs to improve their performance. In particular, we evaluate how
well our approach exploits different data replicas to fit a given
workload. As this paper focuses on scan and projection operators
of MapReduce jobs (see Figure 1), we implement map-phase-only
MapReduce jobs for all our benchmark queries. The reason to do
so is that Trojan Layouts improve the performance of MapReduce
jobs by improving the way they read data from HDFS, which is
done in the map phase of MapReduce jobs. Furthermore, we do
not analyze the MapReduce job and assume that we know the data
4For further details on SDSS visit: http://www.sdss.org/

8

0

1

2

3

4

5

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8

over Hadoop-Row over Hadoop-PAX
Im

p
ro

v
e
m

e
n
t

F
a
c
to

r

TPC-H Queries

(a) TPC-H Customer

0

1

2

3

4

5

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8

over Hadoop-Row over Hadoop-PAX

Im
p

ro
v
e
m

e
n

t
F

a
c
to

r

TPC-H Queries

(b) TPC-H LineItem

0

1

2

3

4

5

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8

over Hadoop-Row over Hadoop-PAX

Im
p

ro
v
e
m

e
n
t

F
a
c
to

r

SSB Queries

(c) SSB LineOrder

0

1

2

3

4

5

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8

over Hadoop-Row over Hadoop-PAX

Im
p

ro
v
e
m

e
n
t

F
a
c
to

r
SDSS Queries

(d) SDSS PhotoObj

Figure 7: Improvement of data access time when using Trojan Layouts over Hadoop-Row and Hadoop-PAX.

access pattern, i.e. the attributes accessed by each query. Recent
works in other aspects of MapReduce (shown in Figure 1) have de-
scribed how to extract these data access patterns from MapReduce
jobs [19, 7]. We run each benchmark three times, measure the time
it takes to read the required data from disk — i.e. the elapsed time
between the initialization and finalization of the itemize UDF —
and report the improvement factor of our approach based on the
average reading time of the trials.

5.4 Per-Replica Trojan Layout Performance
In this section, we evaluate the data access time improvement

of Trojan Layouts over Hadoop-Row and Hadoop-PAX. Let us first
evaluate these three data layouts in terms of redundant attributes
reads and attribute joins for tuple reconstruction. For this, we
analyzed the query groupings and their Trojan Layouts (see Ap-
pendix B for layout details) and we observed that in all datasets
at least two query groups fit perfectly to its corresponding Trojan
Layout. Hence, per-replica Trojan Layouts significantly reduce re-
dundant attribute access as well as tuple reconstruction overhead.
Table 1 summarizes this observation.

#Redundant Attributes Read #Joins in Tuple Reconstruction

HADOOP-ROW 525 0

HADOOP-PAX 0 139

Trojan Layout 14 20

Table 1: Per-replica Trojan Layout analysis

We observe that Trojan Layouts allow us to read ∼37 times less
redundant attributes than Hadoop-Row and to perform ∼7 times less
attribute joins for reconstructing tuples than Hadoop-PAX. Thus,
Trojan Layouts provide for a good trade-off between the number of
redundant attributes and the number of joins in tuple reconstruction

(green cells). This is in contrast to Hadoop-Row and Hadoop-PAX,
which are at the two extremes (red cells).

Figure 7 illustrates the improvement of data access time when
using Trojan Layouts over Hadoop-Row and Hadoop-PAX. We ob-
serve that for those queries referencing few attributes, e.g. Q4 in
LineItem and all queries in LineOrder, Trojan Layouts improve
Hadoop-Row up to factor of 4.8. Indeed, this is because Hadoop-
Row reads a large number of redundant attributes as shown in Ta-
ble 1. In particular, we observe that Hadoop-Row slightly outper-
forms Trojan Layouts only for Q3 in LineItem. This is because
all attributes are referenced and Trojan Layouts have an extra tuple
reconstruction cost that Hadoop-Row does not have. On the other
side, we observe that for those queries referencing many attributes,
e.g. Q1 in LineItem and Q4 in PhotoObj, Trojan Layouts outper-
form Hadoop-PAX up to a factor of 3.5. The reason is that tuple
reconstruction cost in Hadoop-PAX increases as the number of ref-
erenced attributes increases as well. Trojan Layouts amortize tuple
reconstruction cost by co-locating attributes in the same column
groups. Further, the results show that Trojan Layouts never perform
worse than Hadoop-PAX, having at least the same performance as
Hadoop-PAX in the worst case (e.g. Q6–Q8 in Customer).

Overall, our experimental results show that Trojan Layouts sig-
nificantly outperform Hadoop-Row as well as Hadoop-PAX. Our
experimental results also support the simulation results we pre-
sented in Figure 2.

5.5 Comparing Scheduling Policies
In the above experiments, we considered the Best-Layout

scheduling policy (see Section 4.4), which always allocates map
tasks to those nodes storing the best Trojan Layout for incoming
map tasks. However, as discussed in Section 4.4, one could apply
two other scheduling policies as well: the Fetch Best-Layout
policy and the 2nd Best-Layout policy. To understand which
policy performs better, we measure their relative performance with

9

0

900

1800

2700

3600

4500

Customer LineItem LineOrder

1891

3345

82

1446

2044

77

T
im

e
 (
s
e
c
o

n
d

s
) HDFS Trojan HDFS

Relations(a) Using 50 virtual nodes.

0

400

800

1200

1600

2000

LineItem

1377
1266

HDFS 1 HDFS 2 HDFS 3 HDFS Average Trojan HDFS 1 Trojan HDFS 2 Trojan HDFS 3 Trojan HDFS Average

Customer

LineItem

LineOrder

PhotoObj

76 79 76 77 81 80 85 82

2040 2044 2048 2044 3350 3346 3340 3345.33333333333

1440 1452 1446 1446 1860 1858 1955 1891

0 0 0 0 0 0 0 0

0

900

1800

2700

3600

4500

Customer LineItem LineOrder

1891

3345

82

1446

2044

77

T
im

e
 (
s
e
c
o

n
d

s
) HDFS Trojan HDFS

Relations

HDFS 1 HDFS 2 HDFS 3 HDFS Average Trojan HDFS 1 Trojan HDFS 2 Trojan HDFS 3 Trojan HDFS Average

Customer

LineItem

LineOrder

PhotoObj

0 0 0 0 0 0 0 0

1265 1263 1271 1266.33333333333 1380 1374 1377 1377

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

T
im

e
 (
s
e
c
o

n
d

s
) HDFS Trojan HDFS

(b) Using 10 physical nodes.

Figure 8: Comparison of Data Loading Times in Trojan and standard HDFS.

0

1

2

3

4

5

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8

Fetch Best-Layout

2nd Best-Layout

R
e
la

ti
v
e
 P

e
rf

o
rm

a
n

c
e

TPC-H Queries

Best-Layout

Figure 9: Worst-case relative data access performance when
using different scheduling policies. We observe that the 2nd
Best-Layout policy significantly hurts performance for some
queries, while the Fetch Best-Layout policy has an overhead
of at most 9% over the Best-Layout policy. Therefore, in prac-
tice, one should try to use the best layout to perform queries
even if data blocks has to be copied through the network.

respect to the Best-Layout policy over TPC-H Lineitem table.
We compute the relative performance of a given scheduling pol-
icy as the ratio of the data access time of the given policy to the
Best-Layout policy.

Figure 9 shows the results of these experiments. As expected,
the Best-Layout policy performs better than the other two poli-
cies. However, we observe that the Fetch Best-Layout policy
performs almost as well as the Best-Layout policy. This is not
the case for the 2nd Best-Layout policy, which is slower by a
factor of up to ∼3.8. This is because map tasks end up reading all
attributes from disk in many cases. Thus, we can conclude that,
when having data block replicas in different layouts, one should
apply only the Best-Layout and Fetch Best-Layout policies.

5.6 Data Loading
Now we compare and analyze the data load performance of
Trojan HDFS with standard HDFS. On a cluster of 50 virtual
nodes, we consider the data load times of three data sets from
our benchmarks: TPC-H Customer, TPC-H Lineitem, and SSB
LineOrder. For each of these data sets, we load the data files on all
data nodes in parallel, i.e. each of the fifty nodes loads ∼ 470 MB
of TPC-H Customer data (23.74 GB in total), ∼15 GB of TPC-H
Lineitem data (759 GB in total), and 12 GB of SSB LineOrder
data (600 GB in total). We use the same command-line utility for
both Trojan as well as standard HDFS.

Figure 8(a) illustrates the results of loading these three data sets
into Trojan and standard HDFS. As expected, standard HDFS is
faster than Trojan HDFS because it simply copies the data from
local hard disks to the distributed file system. On the other hand,

Trojan HDFS parses the data sets into binary representation and
formats them into their Trojan Layout. However, from Figure 8(a),
we see that the difference between the loading times of Trojan
and standard HDFS becomes significantly high for larger tables,
e.g. TPC-H Lineitem table. The reason for this overhead is that
the TrojanHDFS is CPU-intensive due to data parsing and layouts
transformation. However, because of node virtualization more than
60% of the CPU resources are already consumed. Furthermore,
since each physical node of our cluster has a Quad-core processor
(see Section 5.1), each virtual node gets only ∼ 0.7 core. These
two problems slow down the data loading in Trojan HDFS con-
siderably. Standard HDFS, on the other hand, is I/O intensive and
therefore does not get affected.

To actually verify our claims, we repeated the data loading exper-
iments for Lineitem using only the 10 physical nodes, i.e., with-
out any node virtualization. However, we still keep the amount of
data per data node same. Figure 8(b) shows the loading times of
Trojan and standard HDFS. We observe that Trojan HDFS now
compares very well with standard HDFS. This is because the data
nodes get much better CPU resources by not sharing the Quad-core
processors anymore.

In summary, we can say that with appropriate cluster settings,
the data load time overhead of Trojan HDFS is negligible. Fur-
thermore, the one-time data load cost of Trojan HDFS pays off as
recurring speed-ups over several MapReduce jobs.

5.7 Comparison with HYRISE
In this section, we compare our column grouping algorithm

with recently proposed HYRISE [16] layout selection algorithm.
HYRISE proposes a cost-based divide and conquer technique for
layout selection. It divides the set of candidate column groups
using a k-way partitioner and then applies brute force search for
the best layout per partition. Thereafter, it tries to merge column
groups across partitions, before producing the final layout. This
approach effectively improves upon the complexity of prior col-
umn grouping algorithms, e.g. [17]. However, it has two major
problems: (i) there is little column grouping quality control, and
(ii) query grouping, and hence per-replica layouts, is not possible.

In contrast, our interestingness-based column grouping algo-
rithm takes the quality of column grouping into account. To il-
lustrate this, we implemented HYRISE layout selection algorithm.
Table 2 shows the redundant attributes accessed and tuple recon-
struction joins in HYRISE and Trojan layouts.

#Redundant Attributes Read #Joins in Tuple Reconstruction

HYRISE Layout 2 64
Trojan Layout 14 20

Table 2: Quality Comparison of HYRISE and Trojan Layouts

10

Pruning
Threshold

Customer Lineitem LineOrder PhotoObj

0.0 255 65535 131071

0.1 240 65105 56130

0.2 218 60869 12070

0.3 158 45123 2739

0.4 98 22450 904

0.5 48 8168 274

0.6 20 2465 119

10

100

1000

10000

100000

0.0 0.1 0.2 0.3 0.4 0.5 0.6

Pruning Threshold

Customer Lineitem LineOrder

{Q5,Q7,Q8}, {Q10}, {Q3,Q13,Q18,Q22}{Q5,Q7,Q8}, {Q10}, {Q3,Q13,Q18,Q22}{Q5,Q7,Q8}, {Q10}, {Q3,Q13,Q18,Q22}{Q5,Q7,Q8}, {Q10}, {Q3,Q13,Q18,Q22}

{Q1}, {Q6}, {Q3,Q4,Q5,Q7,Q8,Q9}{Q1}, {Q6}, {Q3,Q4,Q5,Q7,Q8,Q9}{Q1}, {Q6}, {Q3,Q4,Q5,Q7,Q8,Q9}{Q1}, {Q6}, {Q3,Q4,Q5,Q7,Q8,Q9}

{Q1.1,Q1.2,Q1.3}, {Q2.1,Q2.2,Q2.3}, {Q3.1,Q3.2}{Q1.1,Q1.2,Q1.3}, {Q2.1,Q2.2,Q2.3}, {Q3.1,Q3.2}{Q1.1,Q1.2,Q1.3}, {Q2.1,Q2.2,Q2.3}, {Q3.1,Q3.2}{Q1.1,Q1.2,Q1.3}, {Q2.1,Q2.2,Q2.3}, {Q3.1,Q3.2}{Q1.1,Q1.2,Q1.3}, {Q2.1,Q2.2,Q2.3}, {Q3.1,Q3.2}

{3,}, {5,}, {0,1,2,4,6,7,}, {3,}, {5,}, {0,1,2,4,6,7,}, {3,}, {5,}, {0,1,2,4,6,7,}, {3,}, {5,}, {0,1,2,4,6,7,},

Q5 Q1 Q1.1

Q7 Q6 Q1.2

Q8 Q3 Q1.3

Q10 Q4 Q2.1

Q3 Q5 Q2.2

Q13 Q7 Q2.3

Q18 Q8 Q3.1

Q22 Q9 Q3.2

3 1 4

1 1 6

3 3 2

1 1 6

TPC-H Customer

TPC-H Lineitem

SSB LineOrder

SDSS PhotoObj

Replica 1 Replica 2 Replica 3

Q5 Q7 Q8

Q1.1 Q1.2 Q1.3

Q1 Q6

Q10

Q2.1 Q2.2 Q2.3

Q3 Q13 Q18 Q22

Q3 Q4 Q5 Q7 Q8 Q9

Q3.1 Q3.2

Q4 Q6 Q1 Q2 Q3 Q5 Q7 Q8

#Redundant Attributes Read #Joins in Tuple Reconstruction

HADOOP-ROW 525 0

HADOOP-PAX 0 139

Trojan Layout 14 20

N
u

m
b

e
r

o
f

C
a
n

d
id

a
te

C
o

lu
m

n
 G

ro
u

p
s

(a) Pruning Effectiveness

3 128 63 63

4 32768 409 409

5 2147483648 3025 3025

6 9.22E+18 25587 25587

7 1.70E+38 239309 239309

8 5.79E+76 2427820 2427820

9 6.70E+153 26564041 26564041

10 8.99E+307 310590691 310590691

1

10

100

1000

10000

100000

1000000

10000000

100000000

1000000000

3 4 5 6 7 8 9 10

1

1E61

1E122

1E183

1E244

1E305

3 4 5 6 7 8 9 10

N
u
m

b
e
r

o
f

It
e
ra

ti
o

n
s

Number of Attributes

Without Disjointness Constraint

With Disjointness Constraint

(b) Knapsack Iterations

1.00E+00

1.00E+01

1.00E+02

1.00E+03

1.00E+04

1.00E+05

1.00E+06

1.00E+07

8 80 800 8000

1701791.67

169772.39

12849.81

47.97

Q
u

e
ry

 G
ro

u
p

in
g

 T
im

e
 (
m

s)

Number of Queries

(c) Query Grouping Scalability

Figure 10: Performance of our column grouping algorithm.

We can see that even though HYRISE significantly reduces the
redundant attributes accessed, it still incurs a very high tuple re-
construction cost. In contrast, Trojan Layout minimizes tuple re-
construction cost while allowing for additional (cheap) redundant
reads. To verify our claim, we ran our benchmark queries over
HYRISE layout. Indeed, our results showed over 14% improve-
ment in total runtime of Trojan Layouts over HYRISE layouts on
TPC-H Lineitem, TPC-H Customer, and SSB LineOrder ta-
bles. Similarly, Trojan Layouts have an improvement of 5.9% over
HYRISE layouts on SDSS PhotoObj table. Lower improvement
on PhotoObj table is due to the large number of attributes accessed
by queries and the skewed query groups produced in our Trojan
Layout (2 groups of 1 query each, and 1 group of 6 queries).

5.8 Grouping Algorithm Performance and
Scalability

We now focus on the effectiveness of our algorithm to group
attributes inside a data block.
Column Group Pruning. First of all, we show the effectiveness
of our interestingness-based column group pruning. Figure 10(a)
shows the pruning performance over TPC-H Customer, TPC-H
LineItem, and SSB LineOrder. We observe that candidate col-
umn groups get pruned progressively with the pruning threshold.
Number of Iterations. Next, we show the effect of adding the dis-
jointness constraint (Equation 2) to our knapsack formulation. Fig-
ure 10(b) compares the number of iterations with and without the
disjointness constraint. Recall that the disjointness constraint pre-
vented us from using dynamic programming algorithm. However,
as we see from the figure, the disjointness constraint significantly
reduces the number of iterations in our algorithm.
Query Workload Scalability. Finally, we show the scalability of
our algorithm with query workload. Recall that to deal with large
number of queries, we apply our grouping algorithm recursively,
i.e. we first independently group sets of queries, then we indepen-
dently group sets of query groups, and so on. Figure 10(c) shows
the time taken to create query groups when scaling the number of
queries. For instance, for 8, 000 queries, the time taken to group
the queries is around 28 minutes. This is acceptable, given that
grouping is an offline process. Thus, our algorithm scales well with
query workload size.

6. RELATED WORK
Column Layouts in Traditional Systems. As an alternative to
traditional n-ary storage model, Decomposition Storage Model
(DSM) [12] was the earliest approach to store data in a column-
oriented layout, i.e. all values of an attribute stored together. Later,
researchers proposed PAX [6], a page-level column layout, to im-
prove cache performance. Finally, Column-Stores [1] reinvented
DSM to significantly improve upon storage requirements as well
as query processing. However, all these approaches were designed

for single-node data processing systems and thus do not care about
replication. In a distributed setting, Fractured Mirrors [28] keeps
two replicas of data: one in row and the other in column layout.
However, it has a fixed number of replicas (two) as well as layouts
(row and column). Trojan layouts, on the other hand, can work with
any number of replicas and can even create hybrid layouts. Still, in
special cases, Trojan layouts can mimic Fractured Mirrors.
Column Layouts in MapReduce. Row layouts in MapReduce
could incur significant overheads over large datasets. To deal with
this, recent works such as Cheetah [11] and ES2 [8] propose to use
block-level PAX layouts in MapReduce. Similarly, a more recent
work [15] creates, for each horizontal range, a different physical
file per attribute. However, all these works create identical layouts
for different replicas of a data block and do not consider column
grouping. In contrast, Trojan Layouts can create a different layout
per data block replica and also consider column grouping.
Column Grouped Layouts. Given a query workload, finding
the optimal column grouping (or vertical partitioning) is a NP-
hard problem [29]. Thus, most of the works on vertical partition-
ing, including the initial approach [23], Data Morphing [17], and
HYRISE [16] focus on heuristics to improve the runtime complex-
ity but do not consider the quality of column grouping. [5] consid-
ers the interestingness (CG-Cost) of candidate column groups and
prunes the ones below a certain threshold. However, CG-Cost has
several problems (discussed in Section 3.1). Our interestingness
measure significantly improves upon CG-Cost, thus enabling our
column grouping algorithm to produce better quality results. Fur-
thermore, previous column grouping algorithms produce a single
best layout for the entire workload. However, in a parallel data pro-
cessing system having inherent data replication, different replicas
could be mapped to different layouts. Our column grouping algo-
rithm makes this possible by producing a set of column-grouped
layouts, each of which are best suited for a different subset of the
workload. With this, we can later route an incoming query to a
more specialized layout.
DBMS Stores with MapReduce. HadoopDB [4] replaces the
HDFS storage in MapReduce with a database. Thus, the data is
now in the DBMS data layout (row layout for row-oriented DBMS,
column layout for column-oriented DBMS). However, this involves
severe changes to the Hadoop execution framework. Similarly, an-
other approache analyzes the map functions and translate them into
SQL queries to be run on a database [19]. These approaches are or-
thogonal to our Trojan philosophy: affect Hadoop from inside in a
non-invasive manner by injecting our technology at the right places
through UDFs only [14].

7. CONCLUSION
MapReduce suffers from very slow execution times in some ana-

lytical tasks compared to DBMSs. One of the reasons for this is that

11

MapReduce processes input data blocks in a strictly row-oriented
fashion, which leads to full scans of the input data [26].

In this paper we proposed Trojan Layouts, a new data layout that
organizes data inside data blocks according to the incoming work-
load. We followed the PAX principle in that we did not change the
outside view of data. However, we considerably depart from PAX
as we: (i) might co-locate attributes together according to query
workloads, (ii) may use different Trojan Layouts for different data
block replicas, and (iii) may, in a special case, mimic fractured mir-
rors: having the best from both PAX and Row Layouts. We imple-
mented our algorithms on top of HDFS 0.20.3. A salient feature of
using per-replica Trojan Layouts is that we can schedule incoming
jobs to data block replicas having the best Trojan Layout.

We experimentally evaluated Trojan Layouts using three real-
world benchmarks: TPC-H, SSB, and SDSS, and compared its
effectiveness against Hadoop using Row (Hadoop-Row) and PAX
(Hadoop-PAX) layouts. The results demonstrated that our approach
significantly outperforms both Hadoop-Row and Hadoop-PAX in
all three benchmarks: up to a factor of 4.8 for Hadoop-Row and up
to a factor of 3.5 for Hadoop-PAX. Figure 11 illustrates how the
experimental runtimes of queries Q1 to Q8 varies with the number
of referenced attributes for TPC-H Customer table. In particular,

 0
 5

 10
 15
 20
 25
 30
 35
 40

 1 2 3 4 5 6 7

Da
ta

 A
cc

es
s

Co
st

 [s
ec

]

Number of Referenced Attributes (Out of 8)

Row Layout
PAX Layout

Trojan Layout

Figure 11: Simulation Validation for TPC-H Customer

the results showed that the performance of Hadoop-PAX decreases
quickly as the number of referenced attributes increases. This is not
the case for Trojan Layouts. In other words, our experimental re-
sults support the simulation results we presented in the introduction
of this paper (see Figure 2).

As future work, we plan to adapt Trojan Layouts to changes in
the workload. Several strategies, such as piggy backing into ongo-
ing MapReduce jobs, can be employed and need to be investigated
in more detail.

8. REFERENCES
[1] D. Abadi, P. Boncz, and S. Harizopoulos. Column-Oriented Database

Systems. PVDLB, 2(2), 2009.
[2] D. Abadi et al. Materialization Strategies in a Column-Oriented

DBMS. In ICDE, 2007.
[3] D. Abadi, S. Madden, and N. Hachem. Column-Stores vs.

Row-Stores: How Different Are They Really? In SIGMOD, 2008.
[4] A. Abouzeid et al. HadoopDB: An Architectural Hybrid of

MapReduce and DBMS Technologies for Analytical Workloads.
PVLDB, 2(1), 2009.

[5] S. Agrawal et al. Integrating Vertical and Horizontal Partitioning into
Automated Physical Database Design. In SIGMOD, 2004.

[6] A. Ailamaki et al. Weaving Relations for Cache Performance. In
VLDB, 2001.

[7] M. J. Cafarella and C. Ré. Manimal: Relational Optimization for
Data-Intensive Programs. In WebDB, 2010.

[8] Y. Cao et al. A Cloud Data Storage System for Supporting Both
OLTP and OLAP. In ICDE, 2011.

[9] F. Chang et al. Bigtable: A Distributed Storage System for Structured
Data. In OSDI, 2006.

[10] S. Chaudhuri. Self-Tuning Database Systems: A Decade of Progress
(Ten Year Best paper Award). In VLDB, 2007.

[11] S. Chen. Cheetah: A High Performance, Custom Data Warehouse on
Top of MapReduce. PVLDB, 3(2), 2010.

[12] G. P. Copeland and S. N. Khoshafian. A decomposition storage
model. In SIGMOD, 1985.

[13] J. Dean and S. Ghemawat. MapReduce: A Flexible Data Processing
Tool. CACM, 53(1):72–77, 2010.

[14] J. Dittrich, J.-A. Quiané-Ruiz, A. Jindal, Y. Kargin, V. Setty, and
J. Schad. Hadoop++: Making a Yellow Elephant Run Like a Cheetah
(Without It Even Noticing). PVLDB, 3(1), 2010.

[15] A. Floratou et al. Column-Oriented Storage Techniques for
MapReduce. PVLDB, 4(7), 2011.

[16] M. Grund et al. HYRISE - A Main Memory Hybrid Storage Engine.
PVLDB, 4(2), 2010.

[17] R. A. Hankins and J. M. Patel. Data Morphing: An Adaptive,
Cache-Conscious Storage Technique. In VLDB, 2003.

[18] R. Ikeda and J. Widom;. Provenance for Generalized Map and
Reduce Workflows. In CIDR, 2011.

[19] M.-Y. Iu and W. Zwaenepoel. HadoopToSQL: A MapReduce Query
Optimizer. In EuroSys, 2010.

[20] W. Lang and J. M. Patel. Energy Management for MapReduce
Clusters. PVLDB, 3(1), 2010.

[21] C. D. Manning, P. Raghavan, and H. Schütze. Introduction to
Information Retrieval. Cambridge University Press, 2008.

[22] K. Morton, M. Balazinska, and D. Grossman. ParaTimer: A Progress
Indicator for MapReduce DAGs. In SIGMOD, 2010.

[23] S. Navathe et al. Vertical Partitioning Algorithms for Database
Design. ACM TODS, 9(4):680–710, 1984.

[24] T. Nykiel et al. MRShare: Sharing Across Multiple Queries in
MapReduce. PVLDB, 3(1), 2010.

[25] C. Olston et al. Pig Latin: A Not-So-Foreign Language for Data
Processing. In SIGMOD Conference, 2008.

[26] A. Pavlo et al. A Comparison of Approaches to Large-Scale Data
Analysis. In SIGMOD, 2009.

[27] J.-A. Quiané-Ruiz et al. RAFTing MapReduce: Fast Recovery on the
Raft. In ICDE, 2011.

[28] R. Ramamurthy, D. J. DeWitt, and Q. Su. A Case for Fractured
Mirrors. In VLDB, 2002.

[29] D. Sacca and G. Wiederhold. Database Partitioning in a Cluster of
Processors. ACM TODS, 10(1):29–56, 1985.

[30] J. Schad, J. Dittrich, and J. Quiané-Ruiz. Runtime Measurements in
the Cloud: Observing, Analyzing, and Reducing Variance. PVLDB,
3(1), 2010.

[31] M. Stonebraker et al. C-Store: A Column-Oriented DBMS. In VLDB,
2005.

[32] A. Thusoo et al. Data Warehousing and Analytics Infrastructure at
Facebook. In SIGMOD, 2010.

[33] M. Zaharia et al. Delay Scheduling: A Simple Technique for
Achieving Locality and Fairness in Cluster Scheduling. In EuroSys,
2010.

APPENDIX
A. COST MODEL

In this section, we describe our cost model as well as the param-
eters we used for our simulations in Figure 2. We model the costs
for full table scan access over four different layouts: (i) Row Lay-
out, (ii) Column Layout, (iii) PAX Layout, and (iv) Optimal Layout
(which contains, for each query, perfect column groupings within
a data block). Table 3 shows the cost model for these layouts and
Table 4 lists the symbols used in our cost model.

Our cost model considers random and sequential I/Os to read
data from HDFS, network costs to transfer data blocks across data
nodes, and even the scheduling decisions made by MapReduce
scheduler. For network costs, we compute the probability of not
finding any local data block copy and estimate the costs of trans-
ferring data from another node. Note that the Row and PAX lay-
outs have same network transfer costs. On the other hand Column
and PAX layouts have same random and sequential I/O costs, as

12

Symbol Meaning Model

w # map phases (waves)
⌈

N·B
S ·m·n

⌉
Crow

tr (S) transfer cost for row layout (1 − p1r) S
BWnet

Crow
rand(S) rand I/O cost for row layout Crand ·

S
b

Crow
seq (S) seq I/O cost for row layout S

BWdisk
Copt

tr (S) transfer cost for optimal layout (1 − p1r) S
BWnet

Copt
rand(S) rand I/O cost for optimal layout Crand ·

S ·|A′ |
b·|A|

Copt
seq(S) seq I/O cost for optimal layout S ·|A′ |

BWdisk ·|A|

Cpax
tr (S) transfer cost for PAX layout (1 − p1r) S

BWnet

Cpax
rand(S) rand I/O cost for PAX layout Crand ·

⌈
S ·|A′ |
b·|A|

⌉
· |A′ |

Cpax
seq (S) seq I/O cost for PAX layout S ·|A′ |

BWdisk ·|A|

Ccol
tr (S) transfer cost for column layout

[
1 − p1r +

(
1 − R

n

)
· (|A′ | − 1)

]
S

BWnet

Ccol
rand(S) rand I/O cost for column layout Crand ·

⌈
S ·|A′ |
b·|A|

⌉
· |A′ |

Ccol
seq(S) seq I/O cost for column layout S ·|A′ |

BWdisk ·|A|

Crow
scan scan cost for row layout

(
Crow

tr (S) + Crow
rand(S) + Crow

seq (S) + Cm
init

)
· w

Copt
scan scan cost for optimal layout

(
Copt

tr (S) + Copt
rand(S) + Copt

seq(S) + Cm
init

)
· w

Cpax
scan scan cost for PAX layout

(
Cpax

tr (S) + Cpax
rand(S) + Cpax

seq (S) + Cm
init

)
· w

Ccol
scan scan cost for column layout

(
Ccol

tr (S) + Ccol
rand(S) + Ccol

seq(S) + Cm
init

)
· w

Table 3: Full table scan access cost model for different layouts

Symbol Meaning Unit Default Value
N number of blocks 400
B block size bytes 256 MB
S split size bytes 256 MB
R replication factor 3
n number of nodes 50
m number of concurrent map tasks 2
Cm

init map initialization cost seconds 0.1 sec
Crand random seek cost seconds 0.005 sec
BWdisk disk bandwidth bytes/s 100 MB/s
BWnet network bandwidth bits/s 1 GBits/s
b buffer size bytes 512 KB
p1r probability of first replica being local 0.97
A attribute set {1,..,30}
A’ referenced attribute set {1},{1,2}..

Table 4: Cost Model Symbols

Hadoop performs a buffered read anyways. However, these two
layouts have different network costs.

Table 4 also shows the default parameter values which we used
in our simulation. We assume block size to be equal to split size.
We assume 400 blocks in total, which is equivalent to 1TB of data
size, over a cluster of 50 nodes. We experimentally determined a
map initialization time of 0.1 sec and consider random I/O cost to
be 0.005 sec. Our disk and network bandwidths are 100 MB/s and
1 GBits/s respectively. Based on the results presented in [33], we
assume the probability of finding the first replica locally to be 0.97.
Finally, we consider a dataset with 30 attributes.

Now let us see the estimated cost of different layouts on differ-
ent benchmarks. Figure 12 shows the runtime simulation of data
access over Row, Column, PAX, and Trojan (perfectly column-
grouped) data layouts on TPC-H Customer, TPC-H Lineitem, SSB
LineOrder, and SDSS PhotoObj datasets. We can see that PAX and
column-grouped PAX outperforms the traditional Row and Column
layouts by up to 10 orders of magnitude. Furthermore, Trojan lay-
out outperforms PAX by a factor of up to 1.4. Note that we model
just the I/O costs here. In practice, PAX layouts incur significant
CPU costs for tuple reconstruction as well. Thus, we expect the ac-
tual improvements of Trojan layout to be much higher in practice.

B. LAYOUT DETAILS
In this section, we show and discuss the Trojan Layouts that

we obtained from our algorithms when running our experiments
in Section 5. Since we create Trojan data layouts per replica of
a given data block, let us first look at the query groupings gen-
erated for our experimental datasets. Recall that we use the same
algorithm for generating query groups as we use for generating col-
umn groups i.e. we simply invert the attribute usage matrix. Fig-
ure 5 shows the query groups for the first relevant eight queries on
TPC-H Customer, TPC-H Lineitem, SSB LineOrder, and SDSS
PhotoObj datasets. Here, we assume three replicas per data block
and generate three query groups, one for each replica.

Dataset Replica 1 Replica 2 Replica 3
TPC-H Customer Q2, Q3, Q4 Q5 Q1, Q6, Q7, Q8
TPC-H Lineitem Q1 Q5 Q2, Q3, Q4, Q6, Q7, Q8
SSB LineOrder Q1, Q2, Q3 Q4, Q5, Q6 Q7, Q8
SDSS PhotoObj Q4 Q6 Q1, Q2, Q3, Q5, Q7, Q8

Table 5: Query Grouping

Note that two query groups in TPC-H Customer, TPC-H
Lineitem, and SDSS PhotoObj datasets as well as all three query
groups in SSB LineOrder dataset match perfectly with the at-
tribute access pattern. This means there is no redundant attribute
accessed and there are no joins in tuple reconstruction. We map
each query group to a replica and then compute the column group-
ing for each replica separately.

Column Replica 1 Replica 2 Replica 3
Groups

CG1 1,2,4,5,6,7 6 2,3,7
CG2 0,3 0,1,2,3,4,5,7 0
CG3 1
CG4 4,5
CG5 6

Table 6: TPC-H Customer Column Groups. Green replicas
have perfect Trojan Layouts for the queries routed to them.

Column Replica 1 Replica 2 Replica 3
Groups

CG1 0,1,2,3,11, 0,1,2,3,7,8,9 0,2,5,6,10
12,13,14,15 11,12,13,14,15

CG2 4,5,6,7,8,9,10 4,5,6,10 1,4
CG3 8,9,11
CG4 14,15
CG5 7,12
CG6 3,13

Table 7: TPC-H Lineitem Column Groups. Green replicas
have perfect Trojan Layouts for the queries routed to them.

Column Replica 1 Replica 2 Replica 3
Groups

CG1 0,1,2,3,4,6 0,1,2,6,7 0,1,3,6,7
7,10,12,13 8,9,10,11 8,9,10,11
14,15,16 13,14,15,16 13,14,15,16

CG2 5,8,9,11 3,4,5,12 2,4,5,12

Table 8: SSB LineOrder Column Groups. Green replicas have
perfect Trojan Layouts for the queries routed to them.

13

1 Row 5.7078E+01
2 Column 24.1993396
3 PAX 10.7719565
4 Trojan 7.59195652

0

12

24

36

48

60

Row Column PAX Trojan

Data Access Costs for SDSS PhotoObj

C
o

st
s

(s
e
c
)

1 Row 21.744
2 Column 11.9466667
3 PAX 8.285
4 Trojan 7.32

0

6

12

18

24

30

Row Column PAX Trojan

Data Access Costs for TPC-H Customer
C

o
st

s
(s

e
c
)

1 Row 4.6206E+01
2 Column 35.2510833
3 PAX 23.225
4 Trojan 1.718E+01

0

10

20

30

40

50

Row Column PAX Trojan

Data Access Costs for TPC-H Lineitem

C
o

st
s

(s
e
c
)

1 Row 35.334
2 Column 2.107E+01
3 PAX 1.197E+01
4 Trojan 1.017E+01

0

8

16

24

32

40

Row Column PAX Trojan

Data Access Costs for SSB LineOrder

C
o

st
s

(s
e
c
)

Figure 12: Estimated Running Time for Various Benchmarks

Column Replica 1 Replica 2 Replica 3
Groups

CG1 2,3,4,5,8,9 1,2,3,4,5,6,7,13 13,14,15,16,24
10,11,12,13,14 14,15,16,17,18 25,26,27,30,31
15,16,17,18,19 19,20,21,22,23 32,33,34,35,36
20,21,22,28,29 24,25,26,27,28 38,40,41,42,43
39,40,41,42,43 29,31,32,33,34 44,45

44,45 35,36,38,39,45
CG2 0,1,6,7,23,24 0,8,9,10,11,12 0,1,2,3

25,26,27,30,31 30,37,40,41,42
32,33,34,35,36 43,44

37,38
CG3 4,5
CG4 37,39
CG5 11,19
CG6 7,28
CG7 8,23
CG8 12,18
CG9 10,20
CG10 17,21
CG11 6,9
CG12 22,29

Table 9: SDSS PhotoObj Column Groups. Green replicas have
perfect Trojan Layouts for the queries routed to them.

Tables 6, 7, 8, and 9 show the column groupings for the three
data block replicas of TPC-H Customer, TPC-H Lineitem, SSB
LineOrder, and SDS PhotoObj tables respectively. In these ta-
bles, we represent the attributes as integer (starting from 0) at-
tribute IDs in the same sequence as they appear in their bench-
mark datasets. For instance, in Table 6, attribute IDs 0 to 7 de-
note the eight attributes of TPC-H Customer table. Note that each
replica may have a different number of column groups, e.g. SDSS
PhotoObj has two column groups each in the first two replicas
whereas it has twelve column groups in the last replica (see Ta-
ble 9). However, the union of columns groups in each of the repli-
cas contains all attributes present in the dataset. It is worth to notice
that at least two replicas (shown as green in Tables 6, 7, 8, and 9) of
each dataset perfectly fit the queries routed to them i.e. the queries
do not access any redundant attributes nor need any joins for tuple
reconstruction.

Finally, observe that increasing the number of replicas allows us
to create more variety of column groupings and thus hence fit a
heterogenous query workload better. In the extreme case, we could
maintain one replica, with perfect column grouping, for each query
in the workload. However, the downside is that such an arrange-
ment incurs exorbitant storage costs. Nevertheless, the beauty of
Trojan Layouts is that it exploits the default replication in paral-
lel data processing systems without touching the distributed data
storage configurations.

C. BENCHMARKS QUERIES
In this section we enumerate the workload queries used in our

experiments (see Section 5). For each of the four tables —
TPC-H Customer, TPC-H Linitem, SSB LineOrder, and SDSS
PhotoObj — we pick those first eight queries, in their respective
benchmarks, which touch at least one attribute from them. The rea-
son for doing this was that only eight TPC-H queries access any of
the attributes in Customer table. Hence, in order to be fair and have
equal-sized workload for all datasets, we picked just the first eight
queries over the four datasets. Tables 10, 11, 12,and 13 below list
the queries which we use over the three layouts — Row Layout,
PAX Layout, and Trojan Layout — in our experiments.

Query Number Query Referenced Attributes
Q1 TPC-H Query 3 0,6
Q2 TPC-H Query 5 0,3
Q3 TPC-H Query 7 0,3
Q4 TPC-H Query 8 0,3
Q5 TPC-H Query 10 0,1,2,3,4,5,7
Q6 TPC-H Query 13 0
Q7 TPC-H Query 18 0,1
Q8 TPC-H Query 22 0,4,5

Table 10: TPC-H Customers Queries (#total attributes = 8)

Query Number Query Referenced Attributes
Q1 TPC-H Query 1 4,5,6,7,8,9,10
Q2 TPC-H Query 3 0,5,6,10
Q3 TPC-H Query 4 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15
Q4 TPC-H Query 5 0,2,5,6
Q5 TPC-H Query 6 4,5,6,10
Q6 TPC-H Query 7 0,2,5,6,10
Q7 TPC-H Query 8 0,1,2,5,6
Q8 TPC-H Query 9 0,1,2,4,5,6

Table 11: TPC-H Lineitem Queries (#total attributes = 16)

Query Number Query Referenced Attributes
Q1 SSB Query 1.1 5,8,9,11
Q2 SSB Query 1.2 5,8,9,11
Q3 SSB Query 1.3 5,8,9,11
Q4 SSB Query 2.1 3,4,5,12
Q5 SSB Query 2.2 3,4,5,12
Q6 SSB Query 2.3 3,4,5,12
Q7 SSB Query 3.1 2,4,5,12
Q8 SSB Query 3.2 2,4,5,12

Table 12: SSB LineOrder Queries (#total attributes = 17)

Query Query Referenced Attributes
Number

Q1 Basic SELECT-FROM-WHERE 0,1,2,3
Q2 Moving Asteroids 0,4,5
Q3 Using three tables 0,2,3,6,7,8,9,10,11,12,17

18,19,20,21,22,23,28,29
Q4 Selected neighbors in run 0,1,6,7,23,24,25,26,27,30

31,32,33,34,35,36,37,38
Q5 Gridded galaxy counts 2,3,37,39
Q6 Stars multiply measured 0,8,9,10,11,12,30,37

40,41,42,43,44
Q7 Spatial Queries with HTM functions 0,2,3
Q8 Checking if objects are in SDSS footprint 0,2,3

Table 13: SDSS PhotoObj Queries (#total attributes = 46)

14

