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Abstract. Vertical and Horizontal partitions allow database adminis-
trators (DBAs) to considerably improve the performance of business in-
telligence applications. However, finding and defining suitable horizontal
and vertical partitions is a daunting task even for experienced DBAs.
This is because the DBA has to understand the physical query execution
plans for each query in the workload very well to make appropriate de-
sign decisions. To facilitate this process several algorithms and advisory
tools have been developed over the past years. These tools, however, still
keep the DBA in the loop. This means, the physical design cannot be
changed without human intervention. This is problematic in situations
where a skilled DBA is either not available or the workload changes over
time, e.g. due to new DB applications, changed hardware, an increasing
dataset size, or bursts in the query workload. In this paper, we present
AUTOSTORE: a self-tuning data store which rather than keeping the DBA
in the loop, monitors the current workload and partitions the data au-
tomatically at checkpoint time intervals — without human intervention.
This allows AUTOSTORE to gradually adapt the partitions to best fit
the observed query workload. In contrast to previous work, we express
partitioning as a One-Dimensional Partitioning Problem (1DPP), with
Horizontal (HPP) and Vertical Partitioning Problem (VPP) being just
two variants of it. We provide an efficient O?P (One-dimensional Online
Partitioning) algorithm to solve 1DPP. O?P is faster than the specialized
affinity-based VPP algorithm by more than two orders of magnitude, and
yet it does not loose much on partitioning quality. AUTOSTORE is a part
of the OctopusDB vision of a One Size Fits All Database System [13].
Our experimental results on TPC-H datasets show that AUTOSTORE
outperforms row and column layouts by up to a factor of 2.
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1 Introduction

Physical database designs have been researched heavily in the past [23, 3, 2,
5, 6, 31, 7, 22, 26, 12]. As a consequence, nowadays, most DBMSs offer design
advisory tools [1, 32, 30, 4]. These tools help DBAs in defining indexes, e.g. [§],
as well as horizontal and/or vertical partitions, e.g. [3, 15]. The idea of these
tools is to analyze the workload at a given point in time and suggest different
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physical designs. These suggestions are computed by a what-if analysis. What-if
analysis explores the possible physical designs. However, just finding the right
set of partitions is NP-hard [29]. Therefore the search space must be pruned
using suitable heuristics, i.e. typically some greedy-strategy [2]. The cost of each
candidate configuration is then estimated using an existing cost-based optimizer,
i.e. the optimizer is tricked into believing that the candidate configuration al-
ready exists. Eventually, a suitable partitioning strategy is proposed to the DBA
who then has to re-partition the existing database accordingly.

1.1 Problems with Offline Partitioning

The biggest problem with this approach is that it is an offline process. The
DBA will only reconsider the current physical design at certain points in time.
This is problematic. Assume the workload changes over time, e.g. changes in
the workload due to new database applications, an increasing dataset size, or an
increasing number of queries. In these situations the existing partitioning strate-
gies should be revisited to improve query times. In the current offline approach
however, the partitioning strategies will only be changed if a human — the DBA
— triggers an advisory tool with the most recent query logs and eventually de-
cides to repartition the data. This means, the vertical and horizontal partitioning
strategies are carved in stone until the DBA changes them eventually. Further-
more, current advisory tools attempt to find near optimal partitioning strategies,
which is very expensive. This is especially problematic if the database system
has to handle bursts and peaks. For instance consider (i) a ticket system selling
10 million Rolling Stones tickets within three days; (ii) an online store such as
Amazon selling much higher volumes before christmas; or (iii) an OLAP system
having to cope with new query patterns. In these types of applications it is not
acceptable for users to wait for the DBA and the advisory tool to reconfigure
the system. If the system stalls due to a peak workload, the application provider
may loose a lot of money.

1.2 Research Goals and Challenges

Our goal is to research a database store that decides on the suitable partitioning
strategy automatically, i.e. without any human intervention. As the search space
of possible partitions is huge [29], it is clear from the beginning that an opti-
mal automatic partitioning is not always feasible. However, we believe that an
automatic (or: online) partitioning will in most cases be much better than the
one suggested by even a skilled DBA — similarly the physical query execution
plans being in most cases better than hand-crafted plans. The risk of not reach-
ing optimality is similar to the risk of adaptive indexing [14] and cracking [19].
However, the possible gains of such an approach may be similarly tremendous.
This leads to interesting research challenges:

(1.) There exist a plethora of state-of-the-art offline algorithms, e.g. [23, 24, 2],
for suggesting suitable vertical and horizontal partitions. However, given the
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huge search space, it turns out that their runtime complexity is unacceptably
high to be applicable in an online setting where the available time to decide on
a new partitioning is rather limited. Therefore we must develop new algorithms.
(2.) We need algorithms that decide on data partitioning automatically and
while the database is running, i.e. take decisions to repartition the data.

(3.) Any automatic repartitioning must not block or stall the database and/or
access to entire tables, a problem more likely in archival disk-based databases.

1.3 Contributions

In this paper, we present AUTOSTORE, a fully automatic database store, to
solve these challenges. To the best of our knowledge, this work is the first to
solve the database partitioning problem with a fully automatic online approach.
The contributions of this paper are:

(1.) We express partitioning as general One-Dimensional Partitioning Problem
(1IDPP), with Vertical (VPP) and the Horizontal Partitioning Problem (HPP) as
subproblems of it. Both subproblems may be solved by solving 1DPP (Section 2).
(2.) We present AUTOSTORE, an online self-tuned database store that is a step
towards implementing the OctopusDB vision [13, 21]. The core components of
AUTOSTORE are: dynamic workload monitor, partitioning unit clusterer, parti-
tioning analyzer, and partitioning optimizer (Section 3).

(3.) We present an online database partitioning algorithm 0?P (One-dimensional
Online Partitioning) to solve 1IDPP (Section 4).

(4.) We show an extensive evaluation of our algorithm over TPC-H and SSB
benchmarks. We present experimental results from mixed OLTP/OLAP work-
loads over a main-memory and a BerkeleyDB implementation (Section 5).

2 Vertical and Horizontal Partitioning

2.1 Preliminaries

Typically, users partition databases horizontally based on data value ranges,
hashes, or lists. This is because data values are comparable across a column.
However, this is not true for data values across a row. Therefore, sophisticated
partitioning methods have been developed for VPP. In this section we will revisit
the basics of VPP. This also serves as the ground work for our 1DPP.

Naive Approach. Database researchers pointed out the heuristic [16] and NP-
hard [29] nature of partitioning problem pretty early. The number of ways to
partition vertically, for = attributes, is given by bell number B(z). The naive
approach to find the optimal solution is to enumerate all bell numbers. The com-
plexity of the naive approach is O(x®), making it infeasible for large databases.
Affinity based Approach. The naive approach considers all possible parti-
tions, even the ones having attributes which are never accessed together. To
address this, attribute affinity was introduced as a measure of pairwise attribute
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similarity [18, 23, 10, 24, 11]. The core idea of affinity based partitioning is to
compute affinities between every pair of attributes and then to cluster them
such that high affinity pairs are as close in neighborhood as possible. To com-
pute affinity between different attributes, we need to know their access patterns.
A usage function U(q, a) denotes whether or not query ¢ references attribute a.
U(q,a) = 1 if q references a and 0 otherwise. For example, in TPC-H Lineitem
table, U(Q1, PartKey) = 1 as Query 1 references attribute PartKey. The usage
function may also be extended to incorporate query weights, reflecting the im-
portance levels or relative frequencies of queries. To measure the affinity between
two attributes a; and aj, the affinity function A(a;,a;) simply counts their co-
occurrences in the query workload, i.e. A(a;,a;) = >, U(q,a;) - U(g, a;). For
instance, in Lineitem table, A(PartKey, SuppKey) = 5, as attributes PartKey
and SuppKey co-occur in five queries. The affinity function produces a 2D affin-
ity matrix between every pair of attributes. The goal now is to cluster the ma-
trix such that the cells having similar affinity values are placed close together
in the matrix. Every order of rows and columns in the matrix gives a new
ordering of attributes (=<). For example, consider the following affinity matri-
ces for PartKey, SuppKey, and Quantity attributes in TPC-H Lineitem table.

The left matrix rep- PartKey | SuppKey | Quantity PartKey | Quantity | SuppKey
resents an attribute | parckey 8 5 6 PartKey 8 6 5
ordering PartKey =< |Suppkey| 5 8 4 Quantity [ 6 9 4
SuppKey j (Quan‘tity7 Quantity 6 4 9 SuppKey 5 4 8

whereas the right matrix represents ordering PartKey=<Quantity<SuppKey.
Given attribute ordering =<, an affinity measure M (=) measures the quality of
the affinity clustering as M (=) = >77_, >>7_) A(ai, a;)[A(ai, aj-1)+A(ai, aji1)].
It holds that A(ag,a;) = A(ai,a0) = A(ag+1,a;) = A(as, az41)=0. For the
left matrix above M (=) = 404 and for the right matrix M (<) = 440. In-
deed, the right matrix has better clustering since affinity between attributes
PartKey and Quantity (=6) is more than that between PartKey and Supp-
Key (=5). Thus, the objective of affinity matrix clustering problem now is to
maximize the affinity measure. One (greedy) approach is to place the attributes
one-by-one such that the contribution to the affinity measure at each step is max-
imized [23]. The contribution to the affinity measure of a new attribute ay when
placed between two already placed attributes a; and a; is: Cont(a;,a;,ar) =
2-5°" [Alas, a;) - Alaz, a) + A(az, ag) - A(az, a;) — A(az, a;) - Aaz, a;)]. In this
clustering approach, we first place two random attributes; then, in the neighbor-
hood, we place the attribute which maximizes the contribution to the affinity
measure. We repeat this process until all attributes are placed.

2.2 Problem Statement

In this section we express HPP and VPP as a general 1IDPP. The first step to
do so is to identify the smallest indivisible units of storage.

Definition 1. A partitioning unit set P, = {u1,us2,..,un} is the set of n smallest
pieces of data.
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Definition 2. A partitioning unit ordering < defines an order on the partitioning
units in Py.

Partitioning units could be attributes along the vertical axis or tuples along the
horizontal axis. However, partitioning at the tuple level may not make sense
due to large number of partitioning units and hence high complexity. There-
fore, we usually consider sets of tuples, based on some key, as partitioning units
(horizontal partitioning). Similarly, we could also consider groups of columns
as partitioning units (vertical partitioning). Below, we introduce some new con-
cepts needed for our one-dimensional partitioning problem statement. First, we
express partitioning as a logical partitioning, to be able to use it in an algorithm.

Definition 3. A split vector S is a row vector of (n-1) split lines in ordering =,
where a split line s; is defined between partitioning units u; and uji1 as follows:

1 if there is split between u; and w;ji1
S; =
! 0 for no split

A split vector S captures the logical partitioning over a given dataset. For in-
stance, a split vector S1=[0,0,0,1,0,1,1] corresponds to a partitioning of uy, us, us,
uglus, uglur|us. However, in order to estimate costs using a cost-based query op-
timizer, a split vector still needs to be translated in terms of partitioning units:

Definition 4. A partition p,,.(S,X) is a mazimal chunk of adjacent partitioning
units from um to ur, such that split lines sy, to sr—1 are all 0.

Definition 5. A partitioning scheme P(S,=<) over relation R is a set of disjoint
and complete partitions, i.e.

UDPmg,ry (51 j) =R,
z

Pmg,re (S, 2) N Pmy,ry (S, X) = ¢, Vo, y such that x # y.

Partitioning scheme expresses the actual arrangement of partitioning units,
given a split vector. For instance, for split vector Si, partition p; 4(51,%) is
{u1,u2, us, us} and partitioning scheme P(S1,<)={p1 4(51,=),p5,6(51,=%), pr(S1,
=), ps(S1,=)}. Finally, in order to evaluate partitioning schemes in an online set-
ting, we need to model the online query workload.

Definition 6. An Online Workload Wy, is a stream of queries {qo, ..., Gt, 1, Gty }
seen till time ty, where ty, > tx—1 > ... > 0.

Further, let Cegt.(Wy,, P(S,=)) denote the execution cost of workload W;, as
estimated by a cost-based optimizer. Now, we express our one-dimensional par-
titioning problem as follows.

One-dimensional Online Partitioning Problem. Given an online workload
Wy, and partitioning unit ordering <, find the split vector S’ that minimizes the
estimated workload execution cost, i.e.

S = argmin Clest. (thp(sa j)) (1)
S
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The complexity of the above problem depends on the number of partitioning
schemes P, which in turn depends on the range of values of split vector S. Note
that the one-dimensional partitioning problem has the following sub-problems:
(1) Vertical Partitioning, if the partitioning unit set P, is a set of attributes,
and (2) Horizontal Partitioning, if the partitioning unit set is a set of horizontal
ranges.

In the next section we describe our AUTOSTORE system and discuss how it
solves the one-dimensional partitioning problem in an online setting.

3 AutoStore

In this section we present AUTOSTORE, an automatically and online partitioned
database store. The workflow in AUTOSTORE is as follows: (1) dynamically mon-
itor the query workload and dynamically cluster the partitioning units; (2) ana-
lyze the affinity matrix at regular intervals and decide whether or not to create
the partitions; and (3) keep data access unaffected while monitoring workload
and analyzing partitions. The salient features of AUTOSTORE are as follows:

(1.) Physical Data Independence. Instead of exposing physical data partitioning
to the user, AUTOSTORE hides these details. This avoids mixing the logical and
physical schema. Thus, AUTOSTORE offers better physical data independence,
which is not the case in traditional databases.

(2.) DBA-oblivious Tuning. The DBA is not involved in triggering the right
data partitioning. AUTOSTORE self-tunes its data.

(3.) Workload Adaptability. AUTOSTORE monitors the changes in query work-
load and automatically adapts data partitioning to it.

(4.) Generalized Partitioning. AUTOSTORE treats partitioning as a 1DPP. Sub-
problems VPP and HPP are handled equivalently by rotating the table through
ninety degrees, i.e. changing the partitioning units from attributes to ranges.
(5.) Cost, Benefit Optimization. To decide whether or not to actually partition
data, AUTOSTORE considers both the costs as well as the benefits of partitioning.
(6.) Uninterrupted Query Processing. AUTOSTORE makes use of our online algo-
rithm O?P which amortizes the computationally expensive partitioning analysis
over several queries. The query processing remains uninterrupted.

Below we discuss four crucial components — workload monitor, partitioning
unit clusterer, partitioning analyzer, and partitioning optimizer — which make
online self-tuning possible in AUTOSTORE.

Workload Monitor. Online partitioning faces the challenge of creating good
partitions for future queries based on the seen ones. One might consider parti-
tioning after every incoming query. However, not only could this be expensive
(due to data shuffling), the next incoming query could be entirely different from
the previous one. Hence, we maintain a query window to capture the workload
pattern and have greater confidence over partitioning decisions. Additionally,
we slide the query window once it grows to a maximum size, to capture the
latest workload trends. We denote a sliding query workload having N queries as
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Wt];’ C Wy, . After every CheckpointSize number of new queries, AUTOSTORE
triggers partitioning analysis, i.e., it takes a snapshot of the current query win-
dow and the partitioning unit ordering and determines the new partitioning.

Partitioning Unit Clusterer. The partitioning unit clusterer is responsible for
re-clustering the affinity matrix after each incoming query. The affinity matrix
clustering algorithm (in Section 2.1) has the following issues: (i) it recomputes all
affinity values, and (ii) it reclusters the partitioning units from scratch. We need
to adapt it for online partitioning in AUTOSTORE. The core idea is to compute
all affinities once and then for each incoming query update only the affinities
between referenced partitioning units. Note that the change in each of these
affinity values will be 1, due to co-occurrence in the incoming query. For example,
consider TPC-H Lineitem table having the affinity matrix shown at left below.

I\IOVV7 for an inCOming PartKey | Quantity | SuppKey PartKey | Quantity | SuppKey
query accessing Part- Partkey | 8 6 5 Partkey | 9 6 6
Key and SuppKey, Only Quantity 6 9 4 Quantity 6 9 4
the affinities between |[Suppkey| 5 4 8 SuppKey [ 6 4 9

them are updated (gray cells in the right affinity matrix above). Likewise, we
need to re-cluster only the referenced partitioning units. To do this, we keep
the first referenced partitioning unit at its original position, and for the i*" ref-
erenced unit we consider the left and right positions of the (i — 1) referenced
units already placed. We calculate the net contribution of i*" referenced unit to
the global affinity measure as: (Cont at the new position) — (Cont at the cur-
rent position). We choose the position that offers maximum net contribution to
the global affinity measure and repeat the process for all referenced partitioning
units. To illustrate, in the right affinity matrix above, we first place PartKey and
then consider placing SuppKey to the left (net contribution=48) and right (net
contribution=0) of Partkey. Thus, we will place SuppKey to the left of PartKey.
Partitioning Analyzer. The partitioning analyzer of AUTOSTORE analyzes
partitioning every time CheckpointSize number of queries are added by the
workload monitor. The job of the partitioning analyzer is to take a snapshot of
the query window as input, enumerate and analyze the partitioning candidates,
and emit the best partitioning as output. In the brute force enumeration ap-
proach, we consider all possible values (0 or 1), for each split line in the split
vector S of Equation 1. We then pick the split vector which produces the lowest
estimated workload execution cost Cest. (WY, P(S,=)). Each split vector gives
rise to a different candidate partitioning scheme. The size of the set of candi-
date partitioning schemes is 27~ '. In Section 4 we show how the O?P algorithm
significantly improves partitioning analysis in an online setting.

Partitioning Optimizer. Given the partitioning scheme P’ produced by the
partitioning analyzer, the partitioning optimizer decides whether or not to trans-
form the current partitioning scheme P to P’. The partitioning optimizer con-
siders the expected costs of transforming the partitioning scheme as well as the
expected benefits from it. We discuss these considerations below.

Cost Model. We use a cost model for full table and index scan operations over
one-dimensional partitioned tables. To calculate the partitioning costs, we first
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find the partitions in P which are no longer present in P’: Py = P\ P’. Now, to
transform from P to P’ we simply have to read each of the partitions in Pgig and
store it back in the required partitions in P’. For instance, the transformation
cost for vertical partitioning can be estimated as twice the scan costs of partitions
in P. From such a transformation cost model, the worst case transformation cost
is equal to twice the full table scan, whereas the best case transformation cost
is twice the scan cost of the smallest partitioning unit.

Benefit Model. Same as we compute the cost of partitioning, we also need the
benefit of partitioning in order to make a decision. We model partitioning benefit
as the difference in the cost of executing the query window on the current and
the new partitioning, i.e. Biranstorm = Cest. (WtIX, P(S,%))— C’est,(WtJZ, P'(5,X)).
Partitioning Decision. For each transformation made, we would have recurring
benefits over all similar workloads. Hence, we need to factor in the expected
frequency of the query window. This could be either explicitly provided by the
user or modeled by the system. For instance, an exponential decaying model
with shape parameter y: Workload Frequency(f) = W gives higher
frequency to smaller query windows. AUTOSTORE creates the new partitioning
only if the total recurring partitioning benefit (pBenefit = f - Biransform) 1S
expected to be higher than the partitioning cost (pCost = Ciransform)-
Partitioning Transformation/Repartitioning. Repartitioning data from P to P’
poses interesting algorithmic research challenges. As stated before the overall
goal should be to minimize transformation costs. In addition, the database or
even single tables must not be stalled, i.e. by halting incoming queries. For-
tunately, these problems may be solved. In a read-only system any table or
horizontal partition may be transformed in the background, i.e. we transform
P to P’ and route all incoming queries to P. Only if the transformation is fin-
ished, we atomically switch to P’. For updates, this process can be enriched by
keeping a differential file or log L of the updates that are arriving while the
tranformation is running. Any incoming query may then be computed by con-
sidering P and L. If the tranformation is finished, we may eventuall decide to
merge P’ with P. The right strategy for doing this is not necessarily to merge
immediately. A similar discussion as for LSM trees [25] and exponential files [20]
applies. For repartitioning vertical layouts there are other interesting challenges.
None of them would require us to stall incoming queries or halt the database.
We are planning to evaluate these algorithms in a separate study.

4 O?P Algorithm

The partitioning analyzer in Section 3 described the brute force approach of
enumerating all possible values of split vector S in the one-dimensional parti-
tioning problem. This approach has exponential complexity and hence is not
desirable in an online setting. In this section, we present an online algorithm
O?P (One-dimensional Online Partitioning) which solves 1DPP in an online
setting. O?P does not produce the optimal partitioning solution. Instead, it uses
a number of techniques to come up with greedy solution. The greedy solution is
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not only dynamically adapted to workload changes, it also does not loose much
on partitioning quality as well. Below we highlight the major features in O*P:

(1.) Partitioning Unit Pruning. Several partitioning units are never refer-
enced by any of the queries in the query window. For instance, RetailPrice is
not referenced in TPC-H Part table. Due to one-dimensional clustering, such
partitioning units are expected to be in the beginning or the end of the par-
titioning unit ordering. Therefore, O*P prunes them into a separate partition
right away. As an example, consider 3 leading and 2 trailing partitioning units,
out of total 10 partitioning units, to be not referenced. Then, the following split
lines are determined: s; = s3 =0, s3 =1, sg =0, sg = 1.

(2.) Greedy Split Lines. Instead of enumerating over all possible split line
combinations — as in the brute force — O?P greedily sets the best possible
split line, one at a time. O?P starts with a split vector having all split lines as 0
and at each iteration it sets (to 1) only one split line. To determine which split
line to set, O%P considers all split lines unset so far, and picks the one giving the
lowest workload execution cost, i.e. the (i + 1) split line to be set is given by:
Sit1 = argminge s,y Cest. (WY, P(Si+U(s),=)), where U(s) is a unit vector
having only split line s as set; corresponding split vector is: S;11 = S; + U(s).
(3.) Dynamic Programming. Observe that the partitions not affected in the
previous iteration of greedy splitting will have the same best split line in the
current iteration. For example, consider an ordering of partitioning units with
binary partitioning: wi,us,us, us|us, us, u7, us. The corresponding split vector
is: [0,0,0,1,0,0,0] with only split line s4 set to 1 and all other split lines set
to 0. Now, we consider all unset split lines for partitioning. Suppose so and sg
are the best split lines in the left and right partitions respectively and amongst
them ss is the better split line. In next iteration, we already know that sg is the
best split line in the right partition and only need to evaluate s; and s3 in the
left partition again. To exploit this O?P maintains the best split line in each
partition and reevaluates split lines only in partitions which are further split.
Since it performs only one split at a time (greedy), it only needs to reevaluate
the split lines in the most recently split partition. Algorithm 1 shows the dynamic
programming based enumeration in O*P. First, O%P finds the best split line and
its corresponding cost in: the left and right parts of the last partition, and all
previous partitions (Lines 1-6). If no valid split line is found then O?P returns
(Lines 7-9). Otherwise, it compares these three split lines (Line 10), chooses the
one having lowest costs (Lines 11-35), and repeats the process (Line 36).

Theorem 1. O%P produces the correct greedy result.

Theorem 2. If consecutive splits reduce the partitioning units by z elements,
then the number of iterations in O*P is % +2n — 3.

Lemma 1. Worst case complezity of O?P is O(n?).

Lemma 2. Best case complezity of O*P is O(n)t.

L All proofs at: http://infosys.cs.uni-saarland.de/publications/ TR AutoStore.pdf
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Algorithm 1: dynamicEnumerate

Input : S, left, right, PrevPartitions
Output: Enumerate over possible split vectors

1 SplitLine sLeft = BestSplitLine(S,left);
2 Cost minCostLeft = BestSplitLineCost (S,left);
3 SplitLine sRight = BestSplitLine(S,right);
4 Cost minCostRight = BestSplitLineCost(S,right);
5 SplitLine sPrev = BestSplitLine (S, PrevPartitions);
6 Cost minCostPrev = BestSplitLineCost (S, PrevPartitions);
7 if invalid(sLeft) and invalid(sRight) and invalid(sPrev) then
8 ‘ return;
9 end
10 Cost minCost = min(minCostLeft, minCostRight, minCostPrev);
11 if minCost == minCostLeft then
12 SetSplitLine(S, sLeft);
13 if sRight > 0 then
14 ‘ AddPartition(right, sRight, minCostRight);
15 end
16 right = sLeft+1;
17 else if minCost == minCostRight then
18 SetSplitLine (S, sRight);
19 if sLeft > 0 then
20 ‘ AddPartition(left, sLeft, minCostLeft);
21 end
22 left = right;
23 right = sRight+1;
24 else
25 SetSplitLine(S, sPrev);
26 if sRight > 0 then
27 ‘ AddPartition(right, sRight, minCostRight);
28 end
29 if sLeft > 0 then
30 ‘ AddPartition(left, sLeft, minCostLeft);
31 end
32 RemovePartition(sPrev);
33 left = pPrev.start();
34 right = sPrev+1;
35 end

36 dynamicEnumerate(S, left, right, PrevPartitions);

(4.) Amortized Partitioning Analysis. O?P computes the partitioning
lazily over the course of several queries, i.e. it performs a subset of iterations
each time AUTOSTORE triggers the partitioning analyzer. Thus, OP amortizes
the cost of computing the partitioning scheme over several queries. This makes
sense, because otherwise we may end up spending a large number of CPU cycles,
and blocking query execution, even though the partitioning may not be actually
done (due to cost-benefit considerations). The partitioning analyzer returns the
best split vector only when all iterations in the current analysis are done.

(5.) Multi-threaded Analysis. Since our partitioning analysis works on a win-
dow snapshot of the workload, O®P can also delegate it to a separate secondary
thread while the normal query processing continues in the primary thread. This
approach completely separates query processing from partitioning analysis.
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The goal of our experiments is three-fold: (1) to evaluate the partitioning analysis
in AUTOSTORE on realistic TPC-H and SSB workloads, (2) to compare the
query performance of a main-memory based implementation of AUTOSTORE
with No and Full Vertical Partitioning, and (3) to evaluate the performance
of AUTOSTORE on a real system: BerkeleyDB. We present each of these in the
following. All experiments were executed on a large computing node having Intel
Xeon 2.4GHz CPU with 64GB of main memory, and running on Ubuntu 10.10
operating system.

The algorithms of Navathe et. al. [23] and Hankins et. al. [17] have simi-
lar complexity. Therefore, we label them as NV/HC. To compare and obtain
a cost analysis of different components in O%P, we switch them on incremen-
tally. Thus, we have five different variants of O?P: (i) only partitioning unit
pruning (O%Pp), (i) pruning+greedy (O?Ppg), (iii) pruning+greedy-+dynamic
(O%Ppgd), (iv) pruning+greedy-+dynamic+amortized (O?Ppgda), and (v) prun-
ing +greedy+dynamic+multi-threaded (O?Ppgdm).

5.1 Evaluating Partitioning Analyzer

We now evaluate O?P on multiple benchmark datasets and workloads. Fig-
ure 1(a) shows the number of iterations in different variants of O*P for different
tables in Star Schema Benchmark (SSB). We can see that O?Pp indeed improves
over NV /HC on this realistic workload. O?Ppg and O?Ppgd are even better. Fig-
ure 1(b) shows the iterations in different variants of O?P for TPC-H dataset.
For Lineitem table, O?Ppgd has just 42 iterations compared to 32,768 itera-
tions in NV/HC. O?Ppgda and O?Ppgdm have the same number of iterations
as O?Ppgd, hence we do not show them in the figure.

Next, we evaluate the actual running time of different O?P variants while
varying the read-only workload. We vary the 100-query workload from OLTP
style (1% tuple selectivity, 75-100% attribute selectivity) to OLAP style (10%
tuple selectivity, 1-25% attribute selectivity) access patterns. We run this ex-
periment over Lineitem (Figure 2(a)) and Customer tables (Figure 2(b)). We
observe that on Lineitem O2?Ppgd outperforms NV/HC by up to two orders of
maginitude.

Now let us analyze the quality of partitioning produced by O*P. We define
the quality of partitioning produced by an algorithm as the ratio of the ex-
pected query costs of optimal partitioning and the expected query costs of par-
titioning produced by the algorlthm The table below shows the quahty and the
number of iterations for
optimal, NV, and O°P ' quiy E 33“3'3;2 9227"6% o0k Q'?fi'é'; % 0%
partitioning over mixed [iterations 14.60%  2.28% 2.42% | 0.14%
OLTP-OLAP workload. We can see that O”P significantly reduces the number
of iterations, without loosing much on partitioning quality.

Finally, we evaluate the scalability of O?P when increasing workload size.
We vary the workload size from 1 to 10,000 queries consisting of equal number
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Fig. 1. Number of iterations in different algorithms over SSB and TPC-H benchmarks
on different tables.
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Fig. 2. Running times of different algorithms over changing workload type [100 queries
each].
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Fig. 3. Running time of different algorithms over varying workload size [with 50%
OLAP, 50%0LTP queries].

of OLTP and OLAP-style queries. Figures 3(a) and 3(b) show the scalability of
O?P over TPC-H Lineitem and Customer tables respectively. We can see that
all variants of O?P algorithm scale linearly with the workload size. Hence, from
now on we will only consider O?Ppgd algorithm.
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Fig. 4. Comparison of No Partitioning, Full Vertical Partitioning, and AUTOSTORE in
main-memory implementation.

5.2 Evaluating Query Performance

Now we evaluate the query execution performance of AUTOSTORE in comparison
with No and Full Vertical Partitioning. In this evaluation we use a main-memory
implementation of AUTOSTORE in Java. In order to show how AUTOSTORE
adapts vertical partitioning to the query workload, we use a universal relation
de-normalized from a variant of the TPC-H schema [28]. Similar as in [28], we
choose a vertical partition with part key, revenue, order quantity, lineitem price,
week of year, month, supplier nation, category, brand, year, and day of week for
our experiments. Further, since we consider equal size attributes only, we map
all attributes to integer values, while preserving the same domain cardinality.
We use a scale factor (SF) of 1.

Figure 4(a) shows the performance of No Partitioning, Full Vertical Partition-
ing, AUTOSTORE with O2Ppgd, AUTOSTORE with O?P pgdm and AUTOSTORE
with O?Ppgda. We vary the fraction of data accessed, i.e. both the attribute
and tuple selectivity along the x-axis. We vary the OLTP/OLAP read access
patterns as in Section 5.1, with a step size of 0.01%. From the figure we can
see that AUTOSTORE automatically adapts to the changing workload, i.e. even
though it starts with no-partitioning configuration, AUTOSTORE matches or im-
proves full vertical partitioning performance. Therefore, from now on we consider
only O%Ppgda. Figure 4(b) shows the performance of AUTOSTORE when vary-
ing query window size. From the figure we observe that larger query windows,
e.g. query window of 2000 after 70% OLAP, become slower. This is because the
partitioning analyzer has to now estimate the costs of more number of queries
while analyzing partitioning schemes.

5.3 Evaluation over Real System

Modern database systems, e.g. PostgreSQL, have a very strong coupling between
their query processors and data stores. This makes it almost impossible to replace
the underlying data store without touching the entire software stack on top. This
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Fig. 5. Total running time of varying OLTP-OLAP workload on different tables in
BerkeleyDB.

limitation led us to consider BerkeleyDB (Java Edition), which is quite flexible
in terms of physical data organization, for prototyping.

In BerkeleyDB we store a key-value pair for each tuple. The key is composed
of the partition ID and the tuple ID, and the value contains all attribute values
in that partition. Since BerkeleyDB sorts the data on keys by default, we sim-
ple need to change the partition ID to change the partitioning scheme. Again,
we vary the OLTP/OLAP read access patterns as in Section 5.1, with a step
size of 0.01% over TPC-H dataset (total size 1GB). For different layouts, Fig-
ure 5(a) shows the total query execution times over TPC-H Lineitem table and
Figure 5(b) shows the total query execution times over TPC-H Customer table.
In general, AUTOSTORE outperforms the best layout in each of the tables. For
instance, even though AUTOSTORE starts from a no-partitioning configuration,
it improves over Full Vertical Partitioning by 36% in Customer table.

6 Related Work

Offline Horizontal and Vertical Partitioning. Horizontal partitioning is
typically done based on values (range, hash, or list). A recent work proposed
workload-based horizontal partitioning [12]. However, it is still offline. Vertical
partitioning started with early approaches of heuristic based partitioning [16]
of data files. The state-of-the-art work in vertical partitioning [23] develops the
notion of attributes affinity, quantifying attribute co-occurrence in a given set of
transactions. This work creates a clustered attribute affinity matrix in the first
step and applies binary partitioning repetitively in the second step. A follow-
up work [24] presents graphical algorithms to improve the complexity of their
approach. Other works took the type of scan into account to analyze the disk
accesses [10] and formulated an integer linear programming problem to arrive
at the optimal partitioning for relational databases [10]. Next, researchers pro-
posed transaction based vertical partitioning [9], arguing that since transactions
have more semantic meaning than attributes, it makes more sense to partition
attributes according to a set of transactions. However, all of these works con-
sidered data partitioning as a one-time offline process, in contrast to the online
approach to data partitioning in AUTOSTORE. Recent works integrate parti-
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tioning into physical database design tuning problem [3] with the objective of
finding the configuration producing the minimum workload cost within the stor-
age bound. This work first produces interesting column groups by applying a
heuristic-based pruning of the set of all column groups. The column groups are
then merged before all possible partitioning schemes are enumerated. These steps
are not feasible in an online setting. HYRISE [15] analyzes the access patterns
to partitions data. However, this approach is (1) still offline, i.e. it is not able
to adapt to changing workloads, (2) restricted to main memory, whereas AuU-
TOSTORE works for both disk and main memory DBMSs, and (3) is limited to
vertical partitioning, whereas AUTOSTORE solves VPP and HPP equivalently.
Online Physical Tuning. Dynamic materialized views [31] materialize the
frequently accessed rows dynamically. [6] proposes online physical tuning for
indexes, without looking at the partitioning problem. Database Cracking [19]
dynamically sorts the data in column stores based on incoming queries. However,
these works still do not address the online partitioning problem.

7 Conclusion

In this paper, we revisited database partitioning with the objective of auto-
matically fitting data to queries to an online query workload. We presented
AUTOSTORE, an online self-tuning database store. AUTOSTORE monitors the
workload and takes partitioning decisions automatically. We generalized VPP
and HPP to the 1DPP. We presented the O?P algorithm to effectively solve
1DPP. We performed an extensive evaluation of our algorithms over TPC-H
data. We showed experimental results from a main-memory and a BerkeleyDB
implementations of AUTOSTORE over mixed workloads. Our results show that
O?P is faster than earlier approaches by more than two orders of magnitude, and
still produces good quality partitioning results. Additionally, our results show
that over changing workloads AUTOSTORE outperforms existing stores.
Acknowledgements. Work partially supported by DFG, M2CI.
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