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ABSTRACT

Many state-of-the-art join-techniques require the input rela-
tions to be almost fully sorted before the actual join process-
ing starts. Thus, these techniques start producing first re-
sults only after a considerable time period has passed. This
blocking behavior is a serious problem when consequent op-
erators have to stop processing, in order to wait for first
results of the join. Furthermore, this behavior is not ac-
ceptable if the result of the join is visualized or/and requires
user interaction. These are typical scenarios for data min-
ing applications. The ,off-time’ of existing techniques even
increases with growing problem sizes.

In this paper, we propose a generic technique called Pro-
gressive Merge Join (PMJ) that eliminates the blocking be-
havior of sort-based join algorithms. The basic idea behind
PMJ is to have the join produce results, as early as the
external mergesort generates initial runs. Hence, it is pos-
sible for PMJ to return first results very early. This paper
provides the basic algorithms and the generic framework of
PMJ, as well as use-cases for different types of joins. More-
over, we provide a generic online selectivity estimator with
probabilistic quality guarantees. For similarity joins in par-
ticular, first non-blocking join algorithms are derived from
applying PMJ to the state-of-the-art techniques.

We have implemented PMJ as part of an object-relational
cursor algebra. A set of experiments shows that a substan-
tial amount of results are produced, even before the input
relations would have been sorted. We observed only a mod-
erate increase in the total runtime compared to the blocking
counterparts.

1. INTRODUCTION

Operations on large databases may take a long time to
complete. This is true in particular for join operations on
disk-based data, where the number of both, input data as
well as results, can be extremely large. In many settings, it
is desirable to deliver at least a few result items as fast as
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possible. The reason may be that all results need further
processing, which should start as early as possible. This
behavior is highly desired for operations such as online ag-
gregation [13, 11], or when a quick visual inspection of first
results is desired, in order to decide whether the join oper-
ation should continue or be aborted.

The sort-merge join [4] is a popular algorithm for joining
two sets of data items. It first sorts both sets and then steps
in a merge-like fashion through both sequences. This tech-
nique requires a linear order on the input sets, related to the
join predicate. All commercial DBMS provide an implemen-
tation of the equi-join based on the sort-merge paradigm.
For many joins other than equi-join, like spatial and simi-
larity joins, the state-of-the-art algorithms [1, 8] are based
on the sort-merge paradigm.

The most serious problem of the sort-merge join is that
first results are delivered only after the input sets have been
read entirely and (at least partially) sorted. Sort-merge is
therefore blamed for being a blocking algorithm that pre-
vents the fast delivery of results. The same problem occurs
in all algorithms based on the sort-merge paradigm, par-
ticularly the ones for processing joins other than equi-join.
Similarity joins in the context of data mining are an excel-
lent example. They are essential for basic operations like
clustering [5] and outlier detection. The most efficient tech-
niques for similarity joins [6, 8, 17, 23, 27| are sort-based
and therefore return answers only after a long processing
period. This prevents user-interaction which is mandatory
for online data mining. The same observation holds for on-
line aggregation queries [13] that receive their input from
a sort-based join. The blocking behavior of the sort-merge
join is illustrated in Figure 1.

Ideally, a join operator for two sequences of data items
should have the following properties. First and foremost, the
first few results should be delivered rapidly without much
delay of the ones remaining. Moreover, these results should
be sufficiently representative for the entire set such that ac-
curate estimations of aggregates can be supported. Second,
the overall efficiency of the join should not be much worse
than other state-of-the-art methods based on the sort-merge
paradigm. Note that there is a general conflict between the
size of the bulk in which first results are produced and the
speed at which the remaining are delivered. Furthermore,
the number of main memory computations should be similar
to those of sort-merge join.

This work has been supported by grant no. SE 553/2-2 from
DFG.
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Figure 1: The blocking behavior of a sort-based join:
The number of results as a function of runtime

In this paper, we present a new kind of sort-merge join
called Progressive Merge Join (PMJ) which satisfies all of
the requirements stated above. PMJ is derived from the
sort-merge join. Instead of keeping the sorting and joining
phases strictly separated, PMJ attempts to compute results
already during the sorting phase. It does so by sorting both
input sets simultaneously and by joining data items that are
in main memory at the same time. Obviously, the first result
item can be expected significantly earlier than the comple-
tion of the sorting. The total runtime of sorting, however,
will slightly increase by a small constant factor, due to the
fact that main memory must be divided between the input
sets. Nevertheless, the number of main memory computa-
tions will also stay close to the one of the sort-merge join,
simply because data items meet in main memory according
to the mergesort process only. Moreover, an additional over-
head of PMJ is that an answer can be produced more than
once and therefore, an additional check for almost every an-
swer (except the first ones) is required whether it is already
produced or not. PMJ delivers the first result rapidly, but
it does not necessarily deliver any desired number of result
items as fast as possible. We show, theoretically as well as
experimentally, that the total runtime of PMJ is close to the
one of its blocking counterpart. Due to the non-blocking be-
havior, PMJ does not return the join results in order as it is
known from the original sort-merge join. This gives us the
advantage that the early results are sufficiently representa-
tive for computing an online selectivity estimator. Under
the assumptions of independent input relations and a ran-
dom delivery order, see also [11], the estimator gives quality
guarantees independent from the underlying join predicate.
If desired, a slight modification of PMJ can still produce
sorted output after an initial sample.

Our algorithm is generic in the sense that it can be used
whenever the sort-merge paradigm is applicable to process-
ing joins. This paper provides conditions that have to be
satisfied by a specific type of join. It also contains a proof
of correctness for the generic approach, based on these con-
ditions. The algorithm is generic enough for smooth inte-
gration into extensible database systems for easy customiza-
tion [3].

The rest of this paper is organized as follows: the next
section introduces our notation and discusses related work.
After that we introduce our new algorithm PMJ (Section 3).
In Section 4 we present results obtained from experiments

where PMJ is used for implementing different kinds of joins
(equi join, spatial join, similarity join).

2. PRELIMINARIES
2.1 Notation

In this section, we introduce the notation used throughout
the paper. Let R and S be two data sets. Let Pjoin(r,s),
r € R, s € S be a binary predicate. The join of R and S is
given by

RS = {(r,s) | Pjoin(r,s), T € R, s € S}.

We assume in our work that a ‘useful’ order can be defined
on the elements of R and S (otherwise a sort-based approach
would not make much sense). Given such an order, one can
reduce the number of comparisons between elements of R
and S by a great deal. For a set T we use T’ to denote the
sequence that contains all elements of T sorted w.r.t. that
ordering.

2.2 Reated Work

In this section we give an overview on related work on join
processing with a focus on techniques that deal with early
result creation. Contrary to our approach, these techniques
are based on hashing.

Algorithms based on Hashing. In [30], Wilschut and
Apers present the Symmetric Hash-Join (SHJ) for pipelined
processing of equi-joins. A similar idea has been proposed
in [26] by Raschid and Su. For each data set SHJ builds
a hash-table simultaneously in main memory. Whenever a
tuple arrives, it is firstly inserted into its corresponding hash-
table and then probed against the other. No assumption is
made about the arrival frequency of tuples. Even for the case
that one input is temporary blocked, the other can deliver
tuples that allow the continuous production of result tuples.
The most serious limit of SHJ is that both hash-tables have
to be kept in main memory. Obviously, this requirement
can not be met dealing with very large data sets. In [29],
Urhan and Franklin propose the XJoin, a multi-threaded
extension of SHJ that can keep the hash-tables on secondary
memory. XJoin partitions the data into buckets. When
main memory becomes full, the largest bucket is written to
disk and registered for later processing by a parallel thread.
Since answers might be produced more than once, XJoin
also provides an efficient duplicate removal technique based
on time-stamping. A quite similar approach is presented
in [14] where the algorithm is used for data integration of
different active sources.

Haas and Hellerstein [11] address the problem of online
aggregation when the input is received from a join. In or-
der to produce accurate results fast, they introduce Ripple
Joins. The basic idea is that the quality issues of the approx-
imated value of the aggregate control the processing of the
join. This requires an asymmetric processing of the input
relations.

Recently, Luo, Naughton and Ellmann [19] proposed a
non-blocking parallel spatial join algorithm. To the best
of the authors’ knowledge, this is the only work focusing on
the early production of results for joins other than equi-join.
The paper combines the findings of SHJ and PBSM [24],



adding a modified version of the reference point method [7],
in order to eliminate duplicates. The algorithm partitions
the problem in a top-down manner as it is known from hash-
ing, but its partitioning function preserves the ordering.

Algorithms based on Sorting. So far, sort-based joins
have always been considered blocking operators, where first
results are produced only after a considerable portion of
the total runtime. This is particular true for the original
sort-merge join [4] where both inputs are entirely sorted at
first and merged. In [20], Negri and Pelagatti present an
improvement that alleviates the blocking behavior of the
sort-merge join. The authors propose an online processing
of the last merge operation of the external merge sort, i.e.
instead of writing two completely sorted data sequences (one
for each data set) to disk, both data sets are merged directly
until p runs, 2 < p < M, are left on disk. One input-page
for each run is then reserved in main memory and a heap is
used to determine the run that contains the next minimal
element w.r.t. the ordering. By following this approach one
entire write and one entire read of the data sets are saved.
This technique is used in many systems nowadays. However,
the blocking behavior is still visible as it is shown in Figure 1
where the results are obtained from an experiment, using
this optimized version of a sort-merge join.

Despite the fact that sort-merge joins are blocking, many
state-of-the-art algorithms make use of this technique. For
spatial intersection joins, the algorithms presented in [22,
16, 1, 7] are true extensions of the sort-merge join. The
same holds for similarity joins, where we are only aware of
the sort-based algorithms proposed in ([27, 23, 17, 6, 8]).
The blocking behavior of these methods is obviously in con-
tradiction to the interactive processing style of data mining
— the primary target of these algorithms.

3. PROGRESSIVE MERGE JOIN

In this section we introduce our non-blocking generic join
algorithm termed Progressive Merge Join (PMJ). The basic
idea behind PMJ is to sort both data sets simultaneously,
right from the creation of the first run, and progressively
produce results from the subsets in main memory. PMJ
makes use of a so called sweep area that can be tailor-cut
to support all standard sort-based joins like band-joins [18],
temporal joins [28], spatial joins [1] and similarity joins [23,
8]. Therefore, many different joins can benefit from PMJ
with respect to the early production of results.

In the following, we will first present the most important
algorithms of PMJ (see Section 3.1). In Section 3.2 and 3.3
we prove the correctness of PMJ. In Section 3.4 we discuss
the efficiency of our approach. In Section 3.5 we propose
a generic online estimator for the selectivity of joins being
processed by PMJ. Finally, we present important extensions
of PMJ in Section 3.6.

3.1 Algorithms

In analogy to external sorting PMJ consists of two phases
described in the following. Each phase is then explored in
more detail in a separate subsection.

In the first phase, PMJ starts reading as much data as
possible from input sets R and S into the available main-
memory. Both subsets are then sorted using an internal
algorithm like Quicksort. The sorted sequences are joined
using an in-memory join algorithm. After that, both se-
quences are temporarily written to external memory. Re-

Given:
-input sets R and S
-number of items M that can be held in memory
-maximal fan-in of a merge F'

Let @ be an empty set;
Let RES be the empty result set;

Phase 1 (‘Join during run creation’):

1 While (R % {} vV S # {}) {

Let R be a subset of R and S be a subset of S
where |R| + |S| < M

R=R\R; S =5\S;

Sort R into sequence R', sort S into sequence S';

RES = RES U earlyJoinhnitialRuns(R' , 5');

Write &' and S’ to external memory;

Q=Q U {(R,S}

OO ~NO O & WN

}

Phase 2 (‘Join during merge'):
10 While(|Q| > 1) {

11 Let Q be a subset of Q, |Q| < F/2;

12 Let (R',S’) be a tuple of two empty sequences;

13 RES = RES U earlyJoinMergedRuns(Q, (&', 5));
14 Write R eind St terxtAernaI memory;

ig , Q={\Q} v {(R,S"}

Figure 2: Main algorithm of PMJ

sult tuples of the in-memory join are delivered directly to
the next operator [10] and are not further considered. PMJ
continues with loading subsets in memory from the remain-
ing input, sorting and joining these subsets until the input
is completely processed.

In the second phase, PMJ generates longer runs by merg-
ing the sequences that were temporarily written to external
memory. Again, this is performed in a way that a merge
process is active for each of the input sets. The runs ob-
tained from merging are temporarily written to disk. One
of the important ideas of PMJ is that during a merge the
next results of the join are produced.

3.1.1 Joinduring run creation

Let us follow the algorithm presented in Figure 2. The
algorithm starts with four input parameters: the input sets
R and S, the number of items that can be held in memory
(M), and the fan-in of the merge (F). In the first phase,
PMJ starts by creating sorted sub-sequences (‘runs’). This
resembles the run creation phase of external merge sort, but
in contrast, PMJ processes two data inputs at once, see lines
2&3 in Figure 2, where |R|+|S| < M. For sake of simplicity,
let us assume |R| ~ |S| ~ M/2. This however is not fixed
and can be modified at runtime, as required by the ripple
join, for instance. Both subsets are first sorted and then,
the sorted sub-sequences are joined by using an appropriate
internal join algorithm (line 6). The pair (R', S') is then
temporarily stored in @ on external memory (line 7). PMJ
continues creating pairs of sorted sequences until all items
of both input sets are processed (line 1).

The internal join of the first phase is processed by a call of
earlyJoinInitialRuns, see Figure 3. This routine follows
the ideas of the plane-sweep paradigm [25] that is also known



1 Function earlyJoinInitialRuns(Sequences R’, S’){
2 Set RES = {};
3 SweepArea Ry = {}, Sm ={};
4 While (R £{} v S £ {}{
5 r = First(R');
6 s = First(S');
7 IF (" =} V(R £ {} Ar <)) {
8 Ry .insert(r);
9 RES = RES U Sjps.query(r);
10 R = R'\{r};
11 }
12 Else {
13 Spr.insert(s);
14 RES = RES U Rj;.query(s);
15 S = S"\{s};
16
17 }
18 return RES;
19 }

Figure 3: The method earlyJoinInitialRuns

1 TYPE SweepArea {

2 Predicate Pjoin;

3 Predicate Py ;

4 Set X = {};

5 Procedure insert(Element v) {

6 X=X U {v}

7

8 Function query(Element v) {

9 X=X \{u| Prm(u,v), u € X},
10 return { (u,v) | Pjoin(u,v), u € X};
11
12 }

Figure 4: The data type SweepArea

1 Function earlyJoinMergedRuns ({(Rj, Sp),. (R}, Sh)}, (R’,S")){
2 Set RES = {};

3 SweepArea Ry = {}, Sy ={};

4 While (3m : Ry # {} V 3Sm #{}) {

5 Let r =First(R}), r < First(R}) Vi # [;

6 Let s =First(S?}), s < First(S]) Vj # [;

7 If (S ={} v (R, #{}Ar <s)){

8 Ry .insert(r);

9 RES = RES U

10 (Sar-query(r) \ {(r,z)| z € S;});
11 R, = R\ {r};

12 R =R U {r};

13

14 Else {

15 S -insert(s);

16 RES = RES U

17 (Rag query(s) \ {(2,9)] = € R });
18 %‘j = k?'j \ {s};

19 S'=5"U {sh

20 }

21 }

22 return RES;

23 }

Figure 5: The method earlyJoinMergedRuns

from processing spatial joins [1]. In particular, it employs
a specific data structure termed sweep area, see Figure 4,
which corresponds to a set where items are efficiently man-
aged and retrieved with respect to a given predicate. The
sorted sequences are processed item by item. The small-
est unprocessed item of the sequences is first inserted into
the associated sweep area (see line 8&13 of Figure 3) and
then used for retrieving elements from the other sweep area.
The answers to these queries belong to the response set of
the join. We make sure that our storage requirement for
the sweep area is no larger than that of any other (stan-
dard) sort-merge join algorithm for the same predicate. We
achieve this by removing elements that are not relevant for
queries that are issued later, see line 9 of Figure 4. This also
improves the runtime of queries.

We want to point out that the join predicate only occurs in
the specific sweep area. This is actually the reason why our
join is broadly applicable to different kinds of joins. For the
equi-join we obtain the following settings of the predicates:
The join predicate Pjoin(u,v) tests whether u and v are
equal or not. The remove predicate Py, (u,v) tests whether
u is lower than v. After a query is processed, the sweep
area consists of elements that are equal. A more detailed
discussion will follow in Section 3.2.

3.1.2 Join during merge

In the second phase, PMJ merges sorted sub-sequences
(‘runs’) to larger ones. This resembles the merge phases
of external merge sort, but in contrast, PMJ simultane-
ously processes a merge for each input set. The parame-
ter F' denotes the maximal fan-in, i.e. the maximal num-
ber of sequences that may be merged by one operation. Q
contains all tuples of sequences that have to be processed.
PMJ chooses a subset of tuples Q@ C @, where |Q| < F/2
(line 11 in Figure 2). After that, earlyJoinMergedRuns (see
Figure 5) is called with the subset Q and a tuple (R, S")
containing two empty output sequences (line 12/13 in Fig-
ure 2). earlyJoinMergedRuns merges the input sequences
into two larger sequences R’,S" which are then joined di-
rectly and written to disk (line 14 in Figure 2). Finally, the
pair of sorted sequences (R, $') is added to Q. The process
of merging and joining sequences is repeated (line 10 in Fig-
ure 2) until Q contains only a single tuple (R’,S’), i.e. two
sorted sequences of the join inputs R and S.

The method earlyJoinMergedRuns (see Figure 5) simul-
taneously calculates both the merge of the sorted sequences
and their join results. Note, that writing and joining se-
quences is not sequentially processed, as the reader may
expect from our description, but simultaneously processed
in order to avoid temporary buffering and output of the se-
quences. The function first determines one of the smallest
unprocessed elements of the input sequences w.r.t. the order-
ing used in the join (lines 5&6). Then, the smallest element
of them is chosen (line 7) and inserted in the associated
sweep area. Then, a query is processed on the other sweep
area (lines 9&16). The algorithm continues with moving the
element from its original sequence to the output sequence.
This step of joining and merging input sequences is repeated
until both input sequences have been fully consumed (line
4).

Our current implementation of PMJ realizes line 10&17 in
Figure 5 as follows. Instead of using one sweep area for each
data set, there is a sweep area for each input run. Whenever



an item r of the i*" run is selected (line 5-7 in Figure 5), join
partners are only retrieved from the sweep areas that are not
associated to the i** run. This guarantees that no previously
delivered results are reproduced, and it therefore gives the
advantage that a result can immediately be delivered right
after its production.

3.2 Completeness

In this section, we show that PMJ is generally applicable
and correct. In order to prove correctness of PMJ, we first
have to show that PMJ computes the entire response set
(Completeness). We first start with the introduction of two
rules that have to be satisfied by the generic algorithms that
are derived from the plane-sweep paradigm.

The basic idea of the plane-sweep algorithm is that for
each input set the data within a “little” window (with re-
spect to the ordering) is kept in the sweep area. Note that
as long as we do not remove data from the sweep area, the
algorithm shows similarities to SHJ [30]. When the sweep
area is organized as a list, we actually would perform a kind
of symmetric nested-loops join [11]. It is however of utmost
importance to efficiency that the remove predicate P, is
applied just before issuing a query. This keeps the sweep
area small and reduces the number of objects being exam-
ined in the consecutive query. In order to return all results of
the join, however, the remove predicate P, and join pred-
icate Pj,in have to satisfy the following conditions Yu and
You:

Yw > v : Prm(u,v) = 2 Pjoin(u, w) (1)

Vw < v: P (u,v) = 2 Prm (u, w) (2)

The first condition ensures that when v deletes u from the
sweep area, the elements greater than v do not match with
u anymore. The second condition guarantees when v does
not remove u from the sweep area, all elements w that are
lower equal to v do not remove w from the sweep area. Both
conditions are necessary for the correctness of the join. In
particular, the following Lemma holds.

LEMMA 1. Let Prp and Pjoin be predicates satisfying con-
ditions 1 and 2. Let R’ and S’ be sorted sequences. Then,
earlyJoinInitialRuns (see Figure 3) returns R 1 S'.

As a direct consequence from Lemma 1 we obtain that the
original sort-merge join on R and S is correct when it is per-
formed within our algorithmic framework. This is because
the input sets are first entirely sorted and then earlyJoin-
InitialRuns is called once using (R',S’) as input parame-
ter.

THEOREM 1 (COMPLETENESS OF PMJ). Given two in-
put sets R, S and predicates Pjoin and P, PMJ reports all
tuples from R S.

PROOF (COMPLETENESS OF PMJ). We show that each
result tuple of the original sort-merge join is indeed pro-
duced by PMJ. Let (u,v) be an answer obtained from the
original sort-merge join and let us assume (without loss of
generality) that v < v holds and u was inserted into the
sweep area before v. Consequently, Pjoin(u,v) holds, and
with condition (1), we get = Prm (u,v).

Now let us take a look at PMJ. PMJ builds up a merge-
tree for each of the input sets R and S. We make sure with-
out sacrificing efficiency that the skeletons of these merge-
trees are identical, by adding dummy nodes (representing

empty sets) if needed. We distinguish two cases. The first
case is that u and v belong to the same initial run (leaf of
the merge-trees). For such a run, earlyJoinInitialRuns is
called. Due to Lemma 1, (u, v) is then in the response set of
PMJ. The second case is that « and v do not belong to the
same initial run. Then, there is a node in the merge-trees
where they meet for the first time, i.e. the tuple (u,v) could
not have been generated before. earlyJoinMergedRuns, see
Figure 4, performs the merge. Because u < v, u is inserted
into the sweep area (before v is inserted). Therefore, the
consecutive query cannot produce the result tuple.

Next, let us consider the situation when v is inserted into
the sweep area. We show that w still has to be in the sweep
area and PMJ therefore reports (u,v). Since (u,v) is a re-
sult of the join, Pjoin(u,v) is satisfied and with condition
1, =Py (u,v). By using condition (2), we obtain that for
all w € S, u < w < v =Py (u,w). Since only these ele-
ments of S are processed between the insertion of w and v,
we conclude that u has to be in the sweep area when v is
processed. [

In the following, we show that the different types of join
are supported within our algorithmic framework of PM.J.
In Table 1, we report the predicates of the joins and their
sorting order. In addition, we show the underlying data
type of the join. For example, a spatial join is defined for
rectangles where a rectangle is an array of intervals. The
similarity join is defined for points where the join condition
is based on the Euclidean distance. The sorting order as
well as the remove predicate of the similarity join is based
on the Z-code of a multi-dimensional point [22].

LEMMA 2. The remove predicates of the different joins
satisfy the conditions 1 and 2.

PROOF (SPATIAL JOIN). As an example we show that the
Lemma is correct for the spatial join. Let w and v be tuples.
We show that the remove predicate satisfies the two rules:

1. First, let us assume P, (u,v) is satisfied, i.e. v re-
moves u from the sweep area. Then, u.R[0].maz <
v.R[0].min holds. Let w be a tuple and w > v. It
follows that w.R[0].min > v.R[0].min(> u.R[0].max).
Hence, Prm (u, w) is true.

2. Second, let us assume P, (u,v) is not satisfied and let
w, w < v, beatuple. Then, w.R[0].min < v.R[0].min <
u.R[0].maz. Consequently, P, (u,w) is not satisfied.

O

3.3 Uniqueness

In this section, we show that each result of the join is
reported exactly once (Uniqueness). The method early-
JoinMergedRuns of PMJ does not only produce results, but
also contains commands to remove duplicates (see line 10
and 17 in Figure 5). Our specific implementation of remov-
ing duplicates as discussed in Section 3.1.2 is not relevant
for the following Theorem.

THEOREM 2  (UNIQUENESS OF PMJ). PMJ reports each
answer of the join ezactly once.



| Join Algorithm || Data Type | Order by | Pjoin(u,v) | P, (u,v)
equi join attribute A A uA=v.A uA<v.A
band join attribute A A |luA—v.A|<e uA<vA—e¢
temporal join interval I = [min, maz] | I.min NN EL) u.l.maz < v.I.min
spatial join rectangle R = [I,,1,] R[0].min | uw.RNv.R#{ u.R[0].maz < v.R[0].min
similarity join point P ZCode(P) | Euclid(u.P,v.P)< e | ZCode(u.P) no prefix of ZCode(v.P)

Table 1: The predicates and sorting order of different join algorithms

ProoF (UNIQUENESS OF PMJ). The proof is conducted
by an induction on the height of the merge-tree. It is obvious
that a merge-tree of height 0 does not generate duplicates
(because it refers to a join of two initial runs).

Let n be an integer and let us assume that we have al-
ready proved that merge-trees of height j, j < n do not
deliver duplicates. Let us consider a merge-tree of height
n 4+ 1. The last merge of this tree is performed by a call
of earlyJoinMergedRuns where the input refers to runs
(Ro,...,Rm,So,...,Sm) that are generated by merge-trees
of height n. The answers that have been computed until
now are given by

LWJ R; Si.
i=1

These answers would be produced once more, but line 10
and line 17 remove them from the result set. []

3.4 Efficiency

In the following, we first examine the I/O cost of PMJ ex-
pressed in the number of page accesses. We do not consider
the cost for reading the input and writing the output. Let
B and M be the number of items that fit into a page and
into main memory, respectively. Let N be the number of
input items. For simplicity, we assume that M and N are
multiples of B. To conveniently support two input streams
and one output stream for each of both relations, we assume
that M > 6B.

First, let us assume that the size of the sweep area (P) is
always smaller than M — 6B. Then, M — P items can be
used for the run generation and merging phases of external
merge-sort. The I/O cost of PMJ is determined by the cost
of external merge-sort where each input set makes use of
half the available memory. Therefore, the I/O cost of PMJ
is then given by the following formula:

The remaining question is what does happen in case the
sort-merge join requires more than the available memory.
For example, for an equi-join this only happens if a certain
join value occurs almost M times — a problem that can be
addressed in our setting at least as well as in any other (and
even better for instance in the case of spatial joins [1] by
means of an appropriate sweep area organization). Let us
first discuss this issue in detail for the equi-join, band-join
and temporal join. For those types of joins, the queries that
are processed on the sweep area return a join result for each
element of the sweep area. If we modify PMJ such that a
constant portion of memory larger than B is allocated for
the sweep area, the total I/O cost is given by the following
formula:

where k denotes the number of results of the join. For the
spatial join we obtain the same formula by applying a tech-
nique called distribution-sweeping [1]. The authors of [1]
however observed for their real data sets that the size of the
sweep area did not exceed O(V'N). Therefore, they conclude
that the sweep area fits in memory for almost all up-to-date
computers. A very similar observation was made for the
similarity join [8] where the sweep areas in the experiments
required only a marginal portion of the available memory.

Next, we analyze the CPU cost of our algorithm. Let us
assume that each pair of items will have an equal probability
to satisfy the join predicate and that the number of input
items will be N. Then, it follows that the total number
of answers (including the ones that are produced multiple
times) is at most

Seljoin(R,S) * N* + F/(F —1).

Here F' denotes the fan-in of the merge and Seljoin de-
notes the selectivity of the join. This is simply because the
number of answers will increase by a factor F' for each level
of the merge.

In our current approach to eliminating duplicates we run
for each element that has been touched during a merge F —1
queries against a sweep area. With the same arguments as
above, it follows that at most

N+ F/(F —1)

items are touched during merge. Therefore, PMJ requires
N % F queries against sweep areas whereas the traditional
sort-merge join requires only N queries. The runtime can
be alleviated by running queries only against the non-empty
sweep areas.

3.5 Quality of Samples

In this section we present an estimator for computing the
selectivity of the joins. Moreover, we show the accuracy of
the estimator by providing confidence intervals. The follow-
ing approach is based on the ideas of survey sampling [2],
which is different to the ones previously published in the
database area [12]. Survey sampling corresponds to sam-
pling without replacement.

Without loss of generality, we assume that the merge tree
consists of two levels only (root and leaf level). Due to the
query processing of PMJ, R x § is distributed into blocks
of size (M/2)?, i.e., there are at most M?/4 answers to the
join per block. A block corresponds to the data that is pro-
cessed when PMJ is called for two initial runs. We assume
in the following that R and S are in random order and that
the order of R is independent from the order of S. Let us
consider a tuple (r,s) € R x S. The probability that (r,s)
occurs in one of the blocks is the same for each block. This is
a direct consequence from the independence of R and S. It
follows that the data from an arbitrary sequence of k blocks



represents a random sample of size k- M?/4 of R x S. The
basic idea of our approach is to count the qualifying tuples
in a block by applying the following indicator function:

[ 1 if Pjoin(r,s)
I(r,s) = { 0 otherwise

This refers to an experiment without replacement (Laplace
experiment) and can be modeled by the hyper-geometric
distribution. Let C be a set of k blocks and n = k- M? /4 be
the current size of the sample within the blocks. We propose
to use the following estimator for the mean:

I=15 3 1), 3)

bel (r,s)€b

It follows from the hyper-geometric distribution that the es-
timator converges to the mean; the estimator is then called
unbiased. In the following, we calculate for a given « the cor-
responding confidence interval of the estimator with respect
to the Central Limit Theorem. The confidence interval is a
range where the actual mean of the entire response set will
be with probability 1 — a (for a sufficiently large sample).
This requires the computation of the variance of .

THEOREM 3  (VARIANCE OF ESTIMATOR).
Let T = |Rx S|. Let n be the size of a sample independently
and randomly drawn from R x S without replacement. For
a join predicate Pjoin, the variance of the estimator is then
given by

Var(y) = (1 — %) V:/n

where V' denotes the (deterministic) variance of I(r,s), (r,s) €

RxS.

PROOF (VARIANCE OF ESTIMATOR). See [2]. [

Since V' is not known in advance, we use the following un-
biased estimator instead:

L PP LR

bel (r,s)€Eb

Overall, this results in the following unbiased estimator of
the variance:

Var() = (1 2) V?/n.

In an asymptotic sense we are able to apply the Central
Limit Theorem and to calculate the following (1 — «)-confi-
dence interval for §:

(g - zav,/(1 - %) /n, §+ zaf/,/(1 - %) /n) (4)

where z, refers to the a-quantile of the standard normal
distribution N(0,1).

Due to the sorting of two initial runs before they are
joined, the ordering of the data within a block is not random
for PMJ. At the end of the processing of an entire block,
however, the sequence of data refers to a random sample
again. Therefore, we are then and only then in the position
to calculate a confidence interval. In order to increase the
update frequency of the confidence interval, it is possible to
change the in-memory processing of PMJ. PMJ can be ap-
plied in memory to smaller blocks which are not written to

disk but merged immediately. More details on the process-
ing of the confidence intervals are given in the full version
of the paper [9].

Let us compare our approach to the one proposed for the
ripple join [11, 12]. The advantage of our estimator and
its associated confidence interval is their low overhead and
inexpensive computation (about two arithmetic operations
for each answer of the join). For the ripple join, the com-
putation of the confidence interval is more expensive with
respect to both time and space. In particular, the worst-
case occurs for the ripple join when the frequency of the
join values is very low. This is typically satisfied for spa-
tial and similarity joins. The overall cost of a ripple join is
O(n?), whereas the cost of PMJ is O(n log n + k) for many
types of joins (e.g. equi-join) where k denotes the number
of answers. Moreover, our selectivity estimator is generic
in the sense that it can easily be applied to all kinds of
join predicates where the evaluation of the predicate only
depends on the two input items. In particular, similarity
joins and spatial joins are fully supported at the same cost
as other joins. To the best of the authors knowledge, we are
not aware of other sampling-based (non-parametric) meth-
ods applied to estimating the selectivity of similarity joins
and spatial joins where confidence intervals control accuracy.
A disadvantage of our approach compared to the ripple join
seems to be the lower update frequency of the confidence
interval. This however will be outweighed by the fact that
our estimator is more inexpensive to compute. Moreover,
as mentioned above, the update frequency can be improved
by changing the in-memory processing of PMJ or using a
smaller fraction of the the available memory.

3.6 Important considerations

There are different kinds of possible extensions of PMJ
that are important to mention and worth for being examined
in our future research.

First, PMJ is not limited to the computation of an inner
join, but can be extended to compute different kinds of outer
joins and semi joins. For semi joins of relations R and §, we
gain a performance advantage in comparison to the original
approach. Whenever PMJ generates a result tuple r € R,
there is no need anymore to append r to the next run (see
for example line 12 of Figure 3). This reduces the I/O cost
significantly in case of correlated input sets.

Second, the memory occupation of PMJ is not fixed, but
the amount of occupied memory can be adjusted dynami-
cally during runtime. This is advantageous when the avail-
able memory space varies. The techniques known from mem-
ory-adaptive sorting [31] are also applicable to PMJ. We
can even partition memory unevenly among input relations
so as to get early join samples with highest significance, as
required in ripple joins [11].

Third, the production of the first early results may suffer
from the fact of large main memories. Large memories would
also result in unacceptable update frequencies of the online
selectivity estimator and its confidence interval. There are
two solutions to reducing the time until results are produced
(again). First, it is possible to set M smaller than the avail-
able main memory would allow. However, this reduces the
overall efficiency of the join. An interesting strategy is there-
fore to start PMJ with a small value of M and increase M
up to its maximum value during the early processing. A
different approach is to use a combination of mergesort and



quicksort for sorting in memory. First, quicksort is applied
to small subsets (which can be sorted within a second) and
then mergesort is used to produce sorted subsets of size M.
This would give us the advantage of reporting join results
after quicksort has produced a pair of sorted subsets. This
basically resembles the external strategy of PMJ.

Fourth, when the output should be delivered in sorted
order with respect to the join attribute, it still might be
worthwhile to run a slightly modified version of PMJ up to
the point where the last merge has to be performed. This
actually corresponds to the open phase of the join operator.
As it is known from ordinary sort-merge joins, results are
only produced during the last merge and therefore, they are
delivered in sorted order. Note that the overall I/O cost
of this approach is only slightly higher, assuming that the
sweep area always fit into memory. The advantage of this
approach is that a selectivity estimator (and/or other statis-
tics) can be computed from the early answers that are not
reported to the user. The estimated value can then be out-
put before the first regular result will be sent. Consider for
example that we inform the parent operator in the operator
tree about the expected number of tuples. This value will
almost always be more accurate than the first estimation of
the optimizer. Therefore, performance-critical parameters
of the parent operator can still be changed based on the
more accurate estimation.

Fifth, PMJ is also applicable to processing joins on more
than two input relations. An obvious and generally applica-
ble approach is to build up a pipeline of binary joins (and to
distribute memory among the joins carefully). A more ad-
vanced technique can be applied when join predicates refer
to the same set of attributes. The basic idea is then to sort
all input relations simultaneously and to produce results as
early as the first initial runs are sorted. This problem will
be addressed in our future research.

In general, PMJ can be improved further by applying the
broad range of techniques known from external sorting. This
is true in particular for parallel processing. For example, the
technique of balancing the load among processors by effi-
ciently computing quantiles and then distributing sequences
accordingly [15] carries over with small modifications. This
does not take care of balancing the load induced by join
result tuples — an interesting open problem.

4. EXPERIMENTS

In this section we present experimental results for three
types of joins (equi join, spatial join, similarity join) by us-
ing different sort-based algorithms. Among these algorithms
are PMJ, the strict sort-merge-join (strict SMJ) [4] and the
semi-strict sort-merge-join (semi-strict SMJ) [20]. The pur-
pose of the experiments is to demonstrate the broad appli-
cability of PMJ for various types of joins. Moreover, we also
want to report the peroformance of PMJ in comparison to
its blocking counterparts.

All algorithms were implemented in Java 1.4 on top of
XXL [3], a freely available query processing library. The im-
plementations are generic in the sense that the different join
algorithms are supported within a single implementation.
This is accomplished by using different classes of sweep ar-
eas. Moreover, Replacement Selection is our default method
for sorting in-memory, due to its advantage of producing
longer initial runs than Quicksort. The join algorithms also
satisty the Iterator interface, where a call of the method

next delivers the next result tuple of the join.

All experiments run on the Java HotSpot Server Virtual
Machine and a 700 MHz Athlon processor with 256 MB of
memory. We measured the number of disk accesses as well
as the total runtime. We charge one I/O for each write
or read of a page. The page size in the experiments was
set to 4 KB. We assume that the algorithms are part of an
operator tree. Therefore, the cost for the initial read of the
data sets as well as the cost for delivering result tuples to
the next operator — which are the same for all algorithms —
are not considered. In order to measure the total runtime,
the buffer of the operating system was turned off by using
raw devices. The runs that are generated during sorting
are stored contiguously on disk. As a default value, we set
the available main memory to 10% of the size of the input
sets. Therefore, our experiments refer to the case where the
merge-tree consists of only two levels. Due to the availability
of large main memories, merge trees with height greater than
two will seldom occur in practice.

In our experiments, we used real-world data sets as well
as synthetically generated ones. In Table 2 we have listed
for each join type the data sets we have used in the experi-
ments. For the equi-join, we used two uniformly distributed
data sets, whereas for the other join types we used the data
sets (ST, RR) obtained from the TIGER files [21] and data
sets from a CAD application (CAD1, CAD2, CAD1_Shuf,
CAD2_Shuf).

4.1 Comparison of Join Algorithms

In this section we report the results obtained from an
experimental comparison of the different algorithms (PMJ,
strict SMJ, semi-strict SMJ). We report the number of result
tuples computed by the join operators as a function of time
and number of I/Os.

4.1.1 EqQui-Join

In our first experiment we computed the equi-join between
UNI1 and UNI2 (Table 2). Each set consists of 2,000,000
uniformly distributed integers. The results are plotted in
Figure 6 where on the left hand side and right hand side
the number of results tuples are reported as a function of
I/Os and runtime, respectively. Strict SMJ and semi-strict
SMJ start producing results after more than 11000 I/Os and
4000 I/Os, respectively, whereas PMJ returns results from
the very beginning. It is interesting that the curve of PMJ
is a piece-wise linear function. The first linear piece refers
to the run generation phase, whereas the other refers to the
merge phase.

The results that depend on the total runtime (see Fig-
ure 6b) are similar for strict SMJ and semi-strict SMJ. Both
algorithms start producing results only after 50 (61) seconds.
Thereafter, both algorithms produce the results very fast. In
contrast, PMJ delivers the first result tuple in less than a
second. It reports a linearly increasing number of results
until the run generation phase is finished. After that the
curve is again linear but steeper than the one related to the
run generation phase. This shows the faster speed at which
answers are produced.

4.1.2 Spatial Join

In the following, we discuss the results of experiments
where the spatial join is performed on data sets ST and
RR. The sweep area is based on hashing as it is described
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| join | data set | description | data type | #items | dim | size [MB] |
equi-join UNI1 uniformly distributed integers 2,000, 000 1 8.0
UNI2 uniformly distributed integers 2,000, 000 1 8.0
spatial join ST street segments of L.A. rectangle 131,461 2 4.5
RR rail&road segments of L.A. rectangle 128,971 2 4.4
similarity join | CAD1 fourier-vectors of CAD-parts | point 657,048 16 40.1
CAD2 fourier-vectors of CAD-parts | point 655,125 16 40.0
CAD1_Shuf | CADI1 shuffled point 657,048 16 40.1
CAD2_Shuf | CAD2 shuffled point 655,125 16 40.0
Table 2: The data sets used in the experiments
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Figure 6: Equi-join UNI1 < UNI2: Number of result tuples as a function of I/O and time
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Figure 7: Spatial join ST <t RR: Number of results as a function of I/O and time
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in [1]. Despite the fact that strict SMJ was used in the
experiments of [1], the method has already been shown to
be more efficient than its competitors like PBSM [24].

The graphs in Figure 7 show that PMJ again reports a
considerable number of result tuples from the very begin-
ning. When semi-strict SMJ starts reporting results, PMJ
has already produced more than 8,000 answers. The to-
tal number of I/Os is almost the same for PMJ and semi-
strict SMJ, whereas strict SMJ requires double the number
of I/Os. In Figure 7b the number of results is reported as
a function of the runtime. PMJ reports tuples from the be-
ginning whereas the two competitors start their production
after 17 and 22 seconds, respectively. The speed of result
production is however higher for these methods compared to
PMJ. This can be explained by the additional overhead for
duplicate avoidance that requires issuing queries on different
sweep areas. The overhead of the total runtime is only one
third of the runtime of semi-strict SMJ.

4.1.3 Smilarity Join

Figure 8 shows the result of an experiment where a sim-
ilarity join is computed on the 16-dimensional data sets
CAD1 and CAD2. These data sets are generated from split-
ting a data set into two. This is performed such that a
tuple is assigned with probability 0.5 to CADI, otherwise
to CAD2. Due to clustering effects in the original data set,
there is a strong correlation between CAD1 and CAD2. This
is the reason why the total runtime of PMJ is only slightly
higher than the one of SMJ and that many results are al-
ready produced during the initial run generation (Figure 8).
After 70 seconds one third of the answers have been already
reported, whereas semi-strict SMJ reports the first answer
only after 215 seconds. PMJ has no overhead in terms of
I/O for this experiment.

In a second experiment we computed the similarity join
for shuffled versions of CAD1 and CAD2. The results are
plotted in Figure 9. The results for strict and semi-strict
SMJ look similar to the ones in the previous experiment.
The results for PMJ however are different. Only a modest
number of results are produced during run generation. In
comparison to the experiments with equi-joins and spatial
joins, we observe a much higher production rate of the re-
sults during the merge phase. Thus, the total runtime of
PMJ is almost the same as in the previous experiment.

4.2 Theimpact of the memory size

In this experiment we varied the main memory available
to the algorithms. We report the time required to compute
the first 100 tuples of a spatial join between data sets RR
and ST as a function of the available memory (Figure 10).
The size of the memory is given relative to the size of the
data sets. For all buffer sizes, PMJ reports the first 100
tuples by at least one order of magnitude earlier than semi-
strict SMJ. For small buffers (< 5%) this improvement rises
up to two orders of magnitude and higher.

4.3 Selectivity Estimation

In this section, we present results that illustrate the qual-
ity of our online selectivity estimator (see Section 3.5). For
this set of experiments, Quicksort is used for in-memory
sorting to avoid data skew in the initial runs. In Figure 11
we report the results of an experiment where a similarity
join is computed for data sets CAD1_Shuf and CAD2_Shuf.
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Figure 11: Selectivity estimation for the similarity
join CAD1_Shuf x CAD2_Shuf (memory size 2%)

In order to compute frequent updates of the estimation, we
set the available memory to 2% of the size of input sets.
Note that this causes a higher overall runtime compared to
the experiment of Figure 9 where the available memory was
greater by a factor of 5. Figure 11 depicts the estimated
value and its 95% confidence interval as a function of the
total runtime. After a few seconds, the estimated value is
already very close to the total number of answers. The accu-
racy of the estimation is well documented by the confidence
interval. The fourth curve in the figure depicts the number
of results (as a function of the runtime).

5. CONCLUSIONSAND FUTURE WORK

In this paper, we have addressed the problem of design-
ing efficient non-blocking algorithms for join processing that
support an early and progressive production of results. Our
primary target was to support the production of early results
for advanced joins like spatial and similarity joins. Since
all state-of-the-art algorithms are based on the sort-merge
paradigm, we put our focus on this kind of methods.

We proposed a new non-blocking sort-based join technique
called Progressive Merge Join (PMJ). PMJ is broadly appli-
cable to processing a join based on the sort-merge paradigm
whenever a blocking counterpart exists. The basic idea of
PMJ is to produce first results of the join in parallel to sort-
ing the input sets. Sorting is done simultaneously on both
input sets. We identified the conditions that have to be sat-
isfied by a specific type of join, in order to run under our
generic framework that employs a so-called sweep area for
in-memory processing. Moreover, it is formally proved that
the generic framework of PMJ is correct. We showed that
different types of joins can be processed by specialized vari-
ations of PMJ. Among those are equi-joins, temporal joins,
band joins, spatial joins and similarity joins. All these vari-
ants are non-blocking methods with the emphasis on early
production of results. To the best of the authors’ knowl-
edge, PMJ is the first approach to computing early results
for the similarity join, a join type widely used for data min-
ing. Moreover, we also showed that the first results are
sufficiently representative for computing an online selectiv-
ity and its associated confidence interval. Therefore, PMJ
is particularly useful for the interactive exploration of large



data sets where users may abort join processing when the
selectivity of the join does not match their expectation. We
also examined the total runtime of PMJ which is shown to be
almost the same as the runtime of its blocking counterpart.
Finally, we compared the results obtained from experiments
on large sets of different data. Our results confirm that PMJ
produces results much earlier than its blocking counterparts,
while the total runtime of PMJ is only slightly higher.

In terms of future work, we plan to examine the problem
for multiple input relations and to develop an analytical
framework that provides answers to fundamental question
on how fast first join results can be produced. There are
also many possible extensions to PMJ with respect to its
implementation. All the techniques can be applied to PMJ
that are originally designed for improving the runtime of
external sorting.
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