GESS: a Scalable Similarity-Join Algorithm for Mining
Large Data Sets in High Dimensional Spaces’

Jens-Peter Dittrich
Department of Mathematics and Computer
Science
University of Marburg

dittrich@mathematik.uni-marburg.de

ABSTRACT

The similarity join is an important operation for mining
high-dimensional feature spaces. Given two data sets, the
similarity join computes all tuples (z,y) that are within a
distance €.

One of the most efficient algorithms for processing simi-
larity-joins is the Multidimensional-Spatial Join (MSJ) by
Koudas and Sevcik. In our previous work — pursued for
the two-dimensional case — we found however that MSJ
has several performance shortcomings in terms of CPU and
I/O cost as well as memory-requirements. Therefore, MSJ
is not generally applicable to high-dimensional data.

In this paper, we propose a new algorithm named Generic
External Space Sweep (GESS). GESS introduces a modest
rate of data replication to reduce the number of expensive
distance computations. We present a new cost-model for
replication, an I/O model, and an inexpensive method for
duplicate removal. The principal component of our algo-
rithm is a highly flexible replication engine.

Our analytical model predicts a tremendous reduction of
the number of expensive distance computations by several
orders of magnitude in comparison to MSJ (factor 107). In
addition, the memory requirements of GESS are shown to be
lower by several orders of magnitude. Furthermore, the I/O
cost of our algorithm is by factor 2 better (independent from
the fact whether replication occurs or not). Our analytical
results are confirmed by a large series of simulations and
experiments with synthetic and real high-dimensional data
sets.

1. INTRODUCTION

An efficient support of similarity queries is of utmost im-
portance in different novel applications like multimedia [1],
text mining [9] and clustering [7]. In order to support sim-
ilarity queries on complex objects, each of these objects
is represented by a feature vector, which can generally be
viewed as a point in a multi-dimensional space. Similar-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

SIGKDD 2001, San Francisco, California

Copyright 2001 ACM X-XXXXX-XX-X/XX/XX ...$5.00.

Bernhard Seeger
Department of Mathematics and Computer
Science
University of Marburg

seeger@mathematik.uni-marburg.de

ity between objects is then simply defined using a distance
measure between their feature vectors.

In this paper, we address the problem of supporting sim-
ilarity joins on two sets of feature vectors. For a given pa-
rameter €, a tuple (z,y) satisfies the join predicate if the
distance of x and y is not greater than £. The conventional
approach to processing a similarity join is to transform it
into a d-dimensional intersection join where d is the dimen-
sion of the feature vector. The intersection join considers
circles with radius £/2 centered at the feature vectors.

According to the availability of indexes, the algorithms
for processing intersection joins can be classified into three
classes: availability of indexes on both sets, on one of the
sets or on none of the sets. Though the assumption of avail-
ability of an index on a spatial data set is frequently fulfilled,
it is questionable whether a useful index is available on a set
of feature vectors. Moreover, an index will not be available
when the feature set is delivered as a result of a preprocess-
ing step of another query operator. For these reasons, we
are primarily interested in similarity joins where pre-existing
indexes are not available on both feature sets.

The Multi-dimensional Spatial Join (MSJ) [15, 16], that is
a multi-dimensional extension of [14], has been shown to be
among the most efficient methods for processing similarity
joins. The basic idea of MSJ is to partition the data into
level files. However, three major shortcomings were identfied
11, 8]:

1. CPU cost: [11] reported that MSJ is CPU-bound
during the join-phase due to a tremendous number of
distance computations and therefore, MSJ is not com-
petitive to a simple hash-based method [20].

2. Memory Requirements: [8] stated that the main
memory required by MSJ to run efficiently (without
any swapping) is very high (46% of the input-relation
for typical situations). MSJ is therefore not scalable
for large data sets.

3. I/O cost: MSJ was found to have high I/O cost [11].

In this paper, we present solutions to these problems.
‘We propose an efficient and scalable algorithm called GESS
(Generic External Space Sweep, pron.: ‘Jazz’) for processing
d-dimensional intersection- and similarity joins. GESS over-
comes all three problems of MSJ by introducing a modest

*This work has been supported by grant no. SE 553/2-1
from DFG.

and controlled rate of data redundancy. Since redundancy
causes undesirable duplicates in the response set, we provide
an efficient and simple method to eliminate them.

In short, this paper makes the following contributions:

1. We present a cost model for redundancy and the num-
ber of distance computations required for MSJ and
GESS. We validate our model by results obtained from
a simulation and show that GESS is clearly superior
to MSJ. In particular, our analytical model shows that
a modest rate of redundancy (less than 15%) is suffi-
cient to reduce the number of distance computations
by several orders of magnitude.

2. We demonstrate that replication considerably reduces
the main memory requirements. The required size of
memory is generally several orders of magnitude lower
for GESS in comparison to MSJ. This is important for
a scalable algorithm.

3. GESS provides a new I/O strategy. We present an
I/O cost analysis of our algorithm and show that our
approach generally requires only half of the I/O opera-
tions compared to MSJ. This improvement is indepen-
dent from data replication.

4. Finally, we present results of experiments with real
high-dimensional data. Our experiments are consis-
tent with our analytical observations and show tremen-
dous performance improvements of GESS compared to
MSJ.

GESS as well as MSJ are fully integrated in a well docu-
mented library of query processing algorithms [5, 4]. GESS
will be made public available in the next release.

This paper is organized as follows. Section 2 introduces
our notation and discusses related work. In Section 3, we
present GESS, our new method for processing d-dimensional
intersection joins. We present our new cost model for redun-
dancy and the number of distance computations in Section
4. Section 5 gives an analysis of MSJ and GESS with re-
spect to their I/O cost. In Section 6, we present results of
an experimental performance comparison using a simulation
as well as an implementation.

2. PRELIMINARIES

In this section, we introduce the notation used throughout
the paper. Then, we give a brief review of existing meth-
ods for processing similarity and d-dimensional intersection
joins.

2.1 Notation

In the following, we assume for sake of simplicity that
the feature objects are in a d-dimensional unit hypercube
U = [0,1)* and that the distance measure refers to the L,
metric.

DEFINITION 1. Let R and S be sets of d-dimensional fea-
ture vectors. Given a distance g, the response set of the simi-
larity join consists of all pairs (x,y) where x = (x1,... ,&4) €
R and x = (y1,... ,yd) € S such that the join predicate

d 1/p
(Z(xi - yi)”) <e

i=1

18 satisfied.

100

Figure 1: Length ¢ of a hypercube in one dimension
as a function of d (total number of dimensions)

For the special case of a self join (R = S), the definition
of a similarity join is slightly modified to exclude the trivial
results (z, z) from the response set.

For an arbitrary similarity join, we employ the join based
on the Lo, metric as a filter step. This join is equivalent
to an intersection join using sets of hypercubes H(z) :=
H, 4(z) where ¢ refers to the length of the hypercube in
dimension i, 1 < <d, and ¢ € D is a feature vector. It is
therefore sufficient to study intersection joins in the rest of
the paper.

2.2 The Dimensional Impact

The most serious problem of processing high-dimensional
intersection joins is the so-called curse of dimensionality,
a problem that has been known in statistics for long [22].
Under the assumption that data is uniformly distributed, it
seems to be difficult to design efficient join algorithms. In
order to illustrate the problem, Figure 1 shows the length (&)
of the hypercubes as a function of the dimensionality (d) for
different volumes (V') of the hypercubes. The results are ob-
tained under the uniformity and independence assumption.
For fifty dimensions, ¢ is almost as large as the unit interval.
Fortunately, these assumptions do not hold for real data sets
where strong correlations between different dimensions can
be observed. Results obtained from different experiments
with real data [12] have given a strong indication that the
fractal dimension is an excellent measure for the true di-
mensionality of a data set. The analytical results obtained
under the assumption of uniformity and independence are
applicable and accurate for correlated data sets when d is
simply replaced by the fractal dimension [2].

2.3 Review of Previous Work

We are mainly interested in methods for processing simi-
larity joins that do not require the availability of pre-existing
indexes. These methods can be classified into three cate-
gories:

e Nested-loops/brute-force: ~ This class contains tech-
niques like the VA-file [24] where scans are performed
on a highly compressed database.

e Hash-based methods: These methods partition the in-
put data into buckets and perform the join on pairs

of buckets in a recursive manner. Most of the meth-
ods [20, 17, 6] replicate data resulting in high replica-
tion rates (especially for high-dimensional joins). Since
replication may cause duplicates in the response set, a
post-processing of the results (e.g. sorting) is required
to get rid of the duplicates.

Other methods like the e-KDB-tree [23] avoids repli-
cation at the cost of extremely high main memory re-
quirements. Each bucket of the e-KDB-tree contains
the feature vectors that are in a stripe of length &
(w.r.t. the first dimension). This method can only be
efficient when the data of two adjacent stripes can be
kept in memory. This however is not guaranteed.

o Sort-based methods: [19] is likely the first proposal of
a high-dimensional intersection join where the data is
sorted with respect to a space-filling curve. A similar
approach has been pursued in [16] where the data is
firstly partitioned into level-files. These methods are
the starting point of our proposal and therefore, a de-
tailed discussion of these methods follows.

24 Generic Framework

In this section, we first present a generic framework for
the join methods presented in [19, 16]. Thereafter, we show
how these methods can be viewed as special cases.

DEFINITION 2 (RECURSIVE PARTITIONING). Let n be a
positive integer and D be a set. Let Dy,...,Dn_1 be a se-
quence of subsets of D satisfying the following conditions:

s D:U0§i<nDi
e DiND; =@ fori#j

Then, P(D) = {D} U Uy<;c,, P(D:) is an n-ary recursive
partitioning of D. Do, ..., Dy,_1 are called the direct subspaces
of D.

Note that trees like kd-tries [19] and quadtrees [21] induce
a recursive partitioning for n = 2 and n = 2%, respectively,
since each node represents a subspace of the underlying data
space. The next lemma states some important properties of
an n-ary recursive partitioning.

LEMMA 1. Let D be a set and P(D) be an n-ary recursive
partitioning of D.

1. Then, the following conditions holds for X,Y € P(D):
XNY=2¢ Vv XDY Vv XCY

2. Let X € P(D) and Dy, ..., Dy_1 be the direct subspaces
of D. If X # D, there exists one and only one i such
that
X C D A XND; =@ forj+#i.
DEFINITION 3. Let D be a set and P(D) be an n-ary re-

cursive partitioning. Let Do, ..., Dp_1 be the direct subspaces

of D. Let X € P(D). Then,

<1@® Codep,;(X)> ,if X CD;
<> , otherwise (X = D)

(1)

Codep(X) = {

The length of Codep(X) is called the level of X.

1 While (both sorted streams are not empty) {
2 Choose minimal hypercube H(x)
from the streams;
3 Ensure prefix-property for Stack_-R and Stack-S;
4 If (H(x) is hypercube of R) {
5 Stack_S.query(H(x));
6 Stack_R.insert(H(x));
7 }
8 Else { //H(x) is hypercube of S
9 Stack_R.query(H(x));
10 Stack_S.insert(H(x));
11 }
12}

Figure 2: Orenstein’s Merge Algorithm

The code defined above returns a string with digits from
{0,...,m —1}. In order to sort the elements in a recursive
partitioning we employ the lexzicographical ordering on the
strings. Note that if a string s; is a prefix of sz, s1 will
precede in the order.

A recursive partitioning P(D) provides a skeleton where
a hypercube H(x) represented by its feature vector z is as-
signed to one or multiple disjoint subspaces of P(D). The
code of the hypercube refers to the ones of its assigned sub-
spaces. The following join methods differ in their assignment
strategies.

24.1 Review of Orenstein’s Algorithm

In this subsection, we briefly review the join-algorithm
proposed by Orenstein [18][19] (termed ORE in the follow-
ing). The method is based on a binary recursive partitioning
(n = 2), see Definition 2, where the binary code represents
the so-called Z-ordering.

ORE assigns each hypercube of the input relations to dis-
joint subspaces of the recursive partitioning whose union
entirely covers the hypercube. ORE sorts the two sets of
hypercubes derived from the input relations (including the
possible replicates) w.r.t. the lexicographical ordering of its
binary code. After that, the relations are merged using two
main-memory stacks Stack_R and Stack_S, see Figure 2. It
is guaranteed that for two adjacent hypercubes in the stack,
the prefix property is satisfied for their associated codes.
This property is ensured in the third line of the algorithm.
Therefore, only those hypercubes are joined (line 5 and 9)
that have the same prefix code.

A deficiency of ORE is that the different assignment strate-
gies examined in [19] cause substantial replication rates.
This results in an increase of the problem space and hence,
sorting will be very expensive. Furthermore, ORE has not
addressed the problem of eliminating duplicates in the result
set.

24.2 Review of MSJ

MSJ performs similar to ORE with two main differences:
First, replication is not allowed and second, an I/O strategy
based on so-called level-files is employed. Moreover, an n-
ary recursive partitioning is used where n = 2¢ (quadtree-
partitioning).

Let us first discuss for MSJ how a hypercube is assigned
to a subspace of the recursive partitioning. Among the sub-
spaces which cover the hypercube we choose the minimum
one. This guarantees that one and only one subspace is

For both data sets:

For each hypercube:
Compute code and level 1 of the hypercube;
Write hypercube into level-file 1;

For each level-file:
Sort level-file w.r.t. the lexicographical ordering;

Perform a synchronized linear scan through

the level-files and
perform Orensteins’s Merge Algorithm;

Figure 3: The basic steps of MSJ

For both data sets:
For each hypercube:
Execute replication algorithm and
compute codes;
Feed Replicates directly into sorting operator;
Perform Orensteins’s Merge Algorithm;
For each result tuple:
Call Reference Point Method;

Figure 4: The GESS-algorithm

assigned to a hypercube.

The algorithm starts by partitioning the hypercubes of the
input relations into level-files according to their levels (see
Figure 3). Hence, a hypercube of level [is kept in the I-th
level-file. Then, the level-files are sorted w.r.t. the code of
the hypercubes. Finally, the Merge algorithm of Orenstein
is called.

Deficiencies of this method for high-dimensional intersec-
tion joins are that a high fraction of the input relation will
be in level 0 [8]. The hypercubes in level 0, however, need to
be tested against the entire input relation in a nested-loop
manner. Moreover, [11] showed for two dimensions that a
modest rate of replication considerably speeds up the overall
execution time of MSJ.

3. GENERIC EXTERNAL SPACE SWEEP

In this section we present our scalable similarity-join algo-
rithm called Generic External Space Sweep (GESS). GESS
makes use of a generic replication algorithm in order to re-
duce the number of expensive distance computations of fea-
ture vectors. Possible duplicates in the result set are avoided
by an inexpensive removal technique. Our algorithm pro-
ceeds in three phases described in the following. Each phase
is then explored in more detail in a separate subsection.

Let R and S be to sets of feature vectors. In the first
phase, each vector of R(S) is transformed into a hyper-
cube that is passed to the replication algorithm (see Sec-
tion 3.1). The replication algorithm creates codes that rep-
resent the subspaces of each hypercube. The hypercubes
are then passed directly to a sorting operator which em-
ploys the lexicographical ordering (see Section 2.4) on the
hypercubes. We do not partition the hypercubes physically
into separate level-files but rely on the properties of the un-
derlying sorting operator (see Section 3.2). After that, the
two sorted streams are merged using Orenstein’s Merge Al-
gorithm (see Figure 2). The algorithm delivers the results
to the Reference Point Method (see Section 3.3) that elim-
inates duplicates in an on-line fashion. The algorithm is
summarized in Figure 4.

1 Predicate split_is_Allowed; //actual replication strategy
2 Procedure replicate(Hypercube H(x), SubSpace D){
3 P(D) := {D} U DO U DI;

4 If(H(x) C DO) {

5 replicate(H(x), DO);

6

7 Else If(H(x) C D1) {

8 replicate(H(x), D1);

9
10 Else If (split_is_Allowed(H(x), P(D))) {

//Split H(x) into two replicates:

11 replicate(H(x) N DO, DO);
12 replicate(H(x) N D1, D1);
13 }
14 Else {
15 return (H(x), Codep (D));
16
17 '}

Figure 5: The replication algorithm of GESS

3.1 The Replication Algorithm

For sake of simplicity, let us first assume a binary re-
cursive partitioning (n = 2). Later we will then change
to a quadtree partitioning which is actually used in our
implementation. The replication algorithm takes a hyper-
cube H(z) and a subspace D as its input. Initially, it is
called with the subspace representing the entire data space.
The algorithm checks whether H(z) C Do V H(z) C D;
holds. If that is the case, the algorithm is recursively called
with the enclosing direct subspace. Otherwise (i.e. H(z) ¢
Do A H(z) ¢ D1) the algorithm calls the user-defined pred-
icate split_is_Allowed. If the predicate is satisfied the hy-
percube H(x) is split into two replicates H(x) N Dy and
H(z) N D;. The algorithm is then invoked recursively for
each replicate. If the predicate returns false the partitioning
process stops and the code determining the actual subspace
is returned. If a hypercube is replicated, multiple codes are
returned by the algorithm. Figure 5 reports the algorithm
in pseudo-code.

Our replication algorithm depends on a user-defined pred-
icate split_is_Allowed that determines the replication strat-
egy. The strategy is not fixed and can be changed dynami-
cally.

Assume a quadtree-partitioning for the rest of this paper,
(P(D) = {D} UUg<;c2¢ P(Di)). We put our focus on the
following important strategies:

STRATEGY 1 (MAXIMUM NUMBER OF SPLIT-LINES).
Splitting a hypercube H(z) is allowed if not more than k
hyperplanes are hit by H(x) at the current quadtree-level.

STRATEGY 2 (MAXIMUM SPLIT LEVEL). Splitting a
hypercube H(x) is allowed if the actual level is smaller than
a given bound, i.e. I < msl, where msl € [0,... ,mL] is the
mazimum split level.

STRATEGY 3 (COMPOSITION-STRATEGY). Splitting a
hypercube H(z) is allowed if Strategy 1 and Strategy 2 hold.

3.2 Why we do not need level-files?

Important for the Merge Algorithm of Orenstein (see Fig-
ure 2) is the lexicographical ordering (see Section 2.4). A

1 H(x) 3

reference point

H(y)
0 | 2

Figure 6: The Reference Point Method (RPM)

physical partitioning of data into level-files is not necessary
as it is performed by MSJ. In order to make Orenstein’s
Merge Algorithm applicable to large data sets, we use an
existing external merge-sort operator. The sorting criteria
is modified to establish the lexicographical ordering on the
feature vectors. Our sorting operator is based on replace-
ment selection [13]. The final merge of the sorted streams
is performed on-line, i.e., the sorted output streams are not
written on disk, but merged in main memory and directly
fed into the merge algorithm.

3.3 RPM: The Reference Point Method

Since GESS allows hypercubes to get replicated, we have
to provide a method to eliminate possible duplicates from
the result set. Let us consider the situation in Figure 6
where we assume that the hypercube H(z) is replicated into
the partitions 1 and 3 at level 1, H(y) resides at level 0.
Both replicates of H(x) are matched against H(y) during
the join-phase. As a consequence the tuple (z,y) would be
reported twice.

Instead of using standard techniques like hashing or sort-
ing [20], we propose an inexpensive on-line method termed
Reference Point Method (RPM). This method neither allo-
cates additional memory nor does it cause any additional
I/O operations. Let z € R,y € S be two feature vectors
where H(z) N H(y) # 0 holds. The basic idea of RPM is to
define a reference point

p = frp(H(z), H(y)) € H(z) N H(y),

i.e., the reference point is contained in the section of H(x)
and H(y). The Reference Point Method then works as fol-
lows:

DEFINITION 4 (RPM). Let H be the hypercube with the
highest level among H(z) and H(y). The result tuple (z,vy)
s reported by the RPM

<= Codep(H) is prefiz of Codep(f,»(H(z), H(y))).

Let us consider again the situation in Figure 6. H = H(z)
since it resides on a higher tree-level. The code of the ref-
erence point rp is Codep (frp(H(z), H(y))) =< 1.. >. H(z)
was replicated and is represented by the codes < 1 > and
< 3 >. Since < 1 > is a prefix of < 1.. > the result is
reported for that replicate. Code < 3 > is not prefix of
< 1.. > and RPM will not report this result. The result is
therefore reported exactly once.

THEOREM 1 (CORRECTNESS OF RPM). The Reference
Point Method reports each result of the join ezactly once.

PROOF. Let P(D) be an m-ary recursive partitioning of
D. Let (z,y) be a result tuple of the join where H(z) and
H(y) are the corresponding hypercubes. The replication
algorithm of GESS computes a set of disjoint subspaces,
say Rep(xz) C P(D) and Rep(y) C P(D) for each hypercube
H(z) and H(y). The elements of Rep(x) and Rep(y) provide
a conservative approximation for H(x) and H (y).

Since V A, B € Rep(z),A# B,ANB =0 andV A,B €
Rep(y), A # B, ANB = {, the reference point can only be in
one of the subspaces of Rep(z) and Rep(y). It follows that
there exists exactly one pair (A, B), A € Rep(x), B € Rep(y)
for which

ANB#OArpe ANB

holds. Since A, B € P(D), it follows that AC Bor BC A
holds. Let us assume A C B. Then,

rp € H(z) N H(y)
< rmp€ANB
<~ m€eACB
— { Codep(B) is prefix of Codep(A)
A Codep(A) is prefix of Codep (rp)

O

4. CPU COST ANALYSIS

In the following we consider the CPU cost of the intersec-
tion join for MSJ and GESS.

Both of the methods partition the input relations R and S
into different levels using a recursive partitioning for n = 2¢
(quadtree partitioning). We use R;(S;) to refer to the subset
of elements of R that is assigned to level . Due to replication
of hypercubes, Z:’;fa R;(S;) will contain more elements than
R(S) for GESS. The CPU cost of the methods is clearly
dominated by the number of distance computations required
in the join phase.

LEMMA 2. The average number of distance computations
DC for processing an intersection join of R and S is given

by

DC=Z;(|Ri|- [;';j_juni > |s,|]). (2)

I=i+1

The proof of the lemma is based on the fact that every hy-
percube of R; has to be checked against those hypercubes
of S (including the replicated ones) which have the same
prefix.

In order to compute the number of distance computations
DC we need to compute how many hypercubes will be on
the different partitioning levels. We assume in our analyti-
cal model that the hypercubes are entirely in the unit cube
[0, 1)¢. This property is not satisfied for our intersection join
problem yet. However, through a simple linear mapping of
the feature vectors it is easily possible to transform the orig-
inal join problem into an equivalent one that provides the
desired properties. We transform each component z; of a
feature vector x as follows:

x;=§+xi-(1—s),(1 <i<d).
Furthermore, we modify the join predicate of the intersec-
tion join to

lzi —yi] < (1—¢e)-e,(1 <i<d).

Due to this transformation of a similarity join into an inter-
section join, it is sufficient to study intersection joins in the
rest of the paper. Boundary effects [3] do not occur.

4.1 Analytical Model of MS]J

Since the size of a hypercube is fixed to € in each dimen-
sion, the maximum partitioning level is bound by mL =
[—loge] —1. The probability Pxc(“hit at [”) that a hyper-
cube hypercube hits a partitioning hyperplane at level [is
given by

+1_\ 4
1-2 6) 3)

me%m%rq=1—(l_ys

For levels I > 1 we have to take care only those hypercubes
that passed levels 0,...,l — 1. The conditional probability
pi := Pc(“hit at I”) that a hypercube hits a hyperplane at
level [is then given by

-1
Py (“hit at 17) - (1 — 3 Pyo(“hit at i”)) J<mL
2
m= ‘

1-3 PNc(“hit at i”)
=0

,l=mL

(4)

4.2 Analytical Model of GESS

In this section, we study the degree of replication of GESS
where the replication strategy 1 is applied for a given £,
1 < k £ d: Whenever a hypercube cuts ¢ hyperplanes,
q < k at level [, the hypercube is divided into 2¢ portions
such that each portion is entirely contained in a subspace.
These portions proceed up to level | + 1. Important to our
analysis is that a hypercube can never hit more than one
hyperplane which belongs to the same dimension.

Let I be the actual level. We are interested in the ran-
dom variable X; that returns the number of intersecting
hyperplanes at level [for a hypercube. Note that the non-
conditional probability p to hit a hyperplane in one dimen-
sion at level [is given by

1 -2ttt

=1-—-
p 1— 2

The non-conditional probability to hit exactly ¢ hyperplanes
at level [follows a binomial distribution:

Prnc(Xi = q) = bay(q) = (Z) S(1-p)-p'a

The probability to hit more than k£ hyperplanes is then given
by

d
PNc(Xl > k‘) = Z PNc(Xl = ’L)
i=k+1

For d = oo and d-p — A, bg,p(k) can be approximated by
a Poisson distribution with mean value A\. We then obtain
the following approximation:

(p-d)***
Pno(X) > k)~ ~— 5
vo(Xi > k) & S)
and hence, the probability to hit more than k hyperplanes
drops exponentially with an decreasing k. Note that p-d < 1
holds because we assume for each dimension a hypercube
hits at most one hyperplane.

In order to compute the probability of a hypercube being
kept at level I, only those hypercubes are taken into account
that already passed levels 0,... ,l — 1, i.e., we consider the
conditional probability. For sake of simplicity, let us first
assume that replication does not increase the number of ob-
jects in the lower levels. The conditional probability to hit
more than k& hyperplanes at level [is given by

P(Xl >k‘)=PNc(Xl >k|Xl_1 Sk‘||X0 Sk) (6)

Since the events on the different levels are independent, the
conditional probability on the right side of equation 6 can
simply be expressed by a product. Overall, we obtain the
following equation:

-1
Pno(X; > k) (1 - E P(X; > Ic)) , I <mL
P(X; > k)= i=0
,l=mL

(7)

The expected number of hypercubes at level [is then given
by

-1
1- 3 P(Xi > k)
=0

|R| - P(Xi > k). (8)

Next, we extend our model in such a way that the num-
ber of replicated objects are considered on the lower levels.
In general, it is difficult to obtain an exact formula when
replication is considered since the distributions of the differ-
ent levels are not independent anymore. Therefore, we are
interested in a simple and accurate estimation. We make
the following two simplifying assumption: First, we assume
that the replicated objects follow the same distribution of
the original objects. Second, we assume that the replicated
objects are of the same size as the original ones.

Let 7#; be our estimation of the number of hypercubes at
level I. Furthermore, let #5; be our estimation of number
of hypercubes that passed level I. By setting #_1 = |R)|,
our estimations 7; and 5; are recursively defined by the
following formulas:

1 =7>i—1+ Pno(Xi > k)

k . 9
i1 =7F>i—1+ », 2'Pne(Xi=14) ,l<mL ©)
=0

L <mL

Moreover, we set #s; and 7; = #s;—1 for [= mL. In Section
6.1 we will provide results from a simulation to show that
our estimations are sufficiently accurate.

5. 1/0 COST ANALYSIS

In this section, we first examine the I/O cost of MSJ and
GESS where R and S are the input relations. The I/O cost
is expressed in the number of pages transferred between disk
and main memory. We assume that at most M pages are
available in memory. We charge one I/O for a page trans-
fer. The basic idea of MSJ is that R and S are partitioned
into level files Ro, R1,... and So, Si,..., respectively. For
a partition P of a relation, |P| denotes the number of pages
of P. In particular, |R| and |S| refer to the number of pages
in the base relations R and S, respectively.

5.1 I/O Cost of MSJ

THEOREM 2. Let

me. — d T08a—1(|R:l/M)] | Ril /M > 1
Ri 0 JRil/M <1

be the number of merges for level-file R;. The I/O cost of
MSJ is
mL
MSJ1/0-cont = AR +1S]) +2) mp;|Ri| + ms;|Si]
i=0

~ J
~~

=:A

(10)
(Proof in [15, 11]).

The computation of the cost for merging the runs, see term
A in equation 10, requires knowledge about the distribution
of the hypercubes among the different levels. With equation
4 we are in the position to compute the expected I/O cost
for the merging of MSJ. As illustrated, the I/O performance
decreases with a decreasing buffer size. In our experiments
we observed that term A was greater 0 for data sets approx-
imately 10 times larger than the available memory M.

5.2 1/0 Cost of GESS

In this section, we examine the I/O cost of GESS. Each of
the two relations R and S is directed to a sorting operator.
These operators write initially sorted runs which requires
|R| + |S| I/Os. The total number of merges is

M ={ flogM_lélRl/Mﬂ | RI/M > 1

RI/M < 1.
Note that the final merge step does not write its data again
on disk, but simply delivers its results to the next operator.
Thus, the entire data set only has to be read in the final
merge step whereas intermediate merges also have to write
every block again. The number of intermediate merges is
given by Mg, intermea = max(Mpg — 1,0). The total I/O cost
of GESS is then given by
GESSI/O—cost =2 (|R| + |S|) +
2 (mR,interlned|R| + mS,intermedlsl) . (1]-)

~~

=:B

GESS requires at least two I1/Os for each input page and
additionally, I/O operations caused by intermediate merges
(see B in equation 11).

In the following we show that term B is likely to be
zero for most practical cases. GESS consists of two sort-
ing operators and the partitions that have to be kept in
memory. Recall, that during the creation of initial runs
and intermediate merges external sorting may occupy the
entire memory of the join. Our operator is based on re-
placement selection [13] which produces on average sorted
runs of size 2M. During the final merge, the sorting opera-
tors have to share the available memory. Let then Mgorter R
(Msorter R + Msorter s < M) be the main memory (in pages)
available to the sorting operator for data set R during the
next-phase of the join. The maximal fan-in of the on-line
merge is Mgsorter R — 1. If we assume sorted input runs of
average size 2M we conclude that a data set of size

maZdata = (MSorter R — 1) 2M

108

R
)
3
5 104
Q
8
3
S 108
10° 1 | |
0 500 1000 1500 2000

M (KB)

Figure 7: Maximum size of data sets if no interme-
diate merges are used

3.0

2.5

2.0

1.5 -

improvement factor (I/O)

]]]
10 5 10 15 20

buffersize (%)

Figure 8: Improvement of GESS over MSJ in terms
of I/0

can be sorted without using intermediate merges. Figure 7
depicts maZdate as a function of M (Msorter r = M/3, page
size = 4K). The graph shows that even for small values of
M very large data sets can be sorted without the need of
intermediate merges, e.g. data sets as large as 690 MB can
be processed using only 2 MB memory. We conclude that in
most practical cases GESS does not need any intermediate
merges. For these cases, the I/O cost of GESS is

GESSI/O—cost ~ 2(|R| + |S|) (12)

independent from the fact whether replication occurs or not.
Figure 8 depicts the improvement of GESS over MSJ. GESS
performs at least two times better than MSJ for all buffer
sizes. If 10% buffer is available GESS is 2.5 times better.
For smaller buffer sizes the improvement is 2.7 and better.

6. EXPERIMENTS

6.1 Simulations

In order to confirm the analytical results we have imple-
mented a simulator in Java based on the random engine of
the COLT library [10]. Our simulator generates uniformly
distributed hypercubes and computes the codes and the cor-
responding levels for each hypercube.

The results depicted in Figure 9 show an excellent agree-
ment of the result obtained from our simulation and the ones
of the analytical model (d = 10, ¢ = 10™%). The graphs
provide the relative occupation of hypercubes among the

10° T T
g
g 1072 i
2,
=] B
3
—4
g 10
b= B
) our model
= 10-6 - simulation =+ _|
| | | |
0 2 4 6 8 10 12

level

Figure 9: Comparison of the analytical model and
the simulation

different level-files.

6.1.1 Distance Computations

Let IF be the improvement factor of GESS compared to
MSJ w.r.t. distance computations. Figure 10 depicts IF
for a self-join for uniformly distributed data sets. Figure
10a shows IF for d = 10, msl = 2 as a function of k£ (log-
scale, k = 0 corresponds to the strategy of MSJ). For ¢ =
107* (k = 1) IF is close to 10 and 1.2 -10® (k = 2). IF
increases with an increasing value of k up to several orders of
magnitude. It however decreases for large €. We observed
modest replication for ¢ = 1072 and ¢ = 10™* (less than
1%). For € = 102 the replication was still less than factor
2. Since the I/O improvement of GESS is better than factor
2 (cf. chapter 5), GESS still needs less I/O operations for
these parameter settings than MSJ. For larger values of ¢
we observed a higher replication rate.

In order to keep the replication rate low we used a different
replication strategy in Figure 10b where msl = 0, i.e. splits
were only allowed at level 0. For & > 3, the graph shows an
IF of about 500 for e = 107*,10"2 and 10~ 2 that remains
constant for higher values of k. This can be explained by
the fact that for £k =1 and ¢ = 107*,1072 level 0 is already
almost empty and only few hypercubes hit more than one
hyperplane. For larger values of €, however, the probability
to hit multiple hyperplanes increases. For these cases, k has
to be increased in order to empty level 0. In our experiments,
the replication rates were less than 11% for all settings. For
€ = 107! the replication rose up to 2.85. The improvement
IF however is still 95.

6.1.2 Memory Requirements

In this section we will take a look at the memory re-
quirements of GESS. The size of the memory required for
GESS can be estimated by M = E:’;LO(|R7,| +8:])/n where
M = Y75 |R;|/n' for a self-join. Figure 11 reports the
main memory requirements M normalized to 1 (M =1
means that the entire input has to be kept in memory) of
GESS for the experiments of the last section. Figure 1la
shows that with an increasing k the memory requirements
of GESS decrease exponentially. The main memory required
for the join phase is by a factor 107 lower in comparison
to MSJ for k = 1 and € = 10™*. For higher values of k
this improvement even increases. For large values of € the
improvement is less but still exponentially depending on &.

| data set || description | # points | d | size |
fourier-vectors
CAD of CAD-parts | 1312173 | 16 | 160 MB
sample of
CAD10 CAD data set 131,217 | 16 16 MB

Table 1: Description of the data sets used in the
experiments

data set MSJ GESS

€ 107] 107* | 1073 | 10~*
CAD [35,093 [3,821 | 772 | 275
CADI10 398 56 | 46 | 41

Table 2: Execution times in seconds for GESS and
MSJ for a self-join

Figure 11b shows the results of the same experiment for
msl = 0. The memory requirements in the graph first de-
crease exponentially and then remain constant. The latter
effect can be explained by our observation that for high val-
ues of k level 0 is almost empty.

6.2 Implementations

In this section, we present results of an experimental eval-
uation of GESS and MSJ. The experiments were performed
on an AthlonTB 700 with 256 MB main memory and 40 GB
hard disk. All algorithms were implemented in Java 1.2 on
top of the XXL-library [5, 4] using Suns just-in-time com-
piler. The buffer available to the algorithms was set to 10
MB. We run the experiments on real world data sets that
have already been used in other experiments [8]. Table 1
describes important properties of the data sets.

The charts in Table 2 show the execution time for GESS.
Our new algorithm takes 772 seconds to compute the join
for ¢ = 0.001 and 275 seconds for ¢ = 0.0001. For MSJ,
however, the corresponding runtimes were 3,821 seconds
and 35,093 seconds = 10 hours, respectively. This means
that the speedup of GESS is 14 and 45 for € = 0.0001 and
€ = 0.001, respectively. The size of the result set for these
joins is 4.4-10° and 4.1-10° tuples. Because of this result we
created a sample of the CAD data set where we only consid-
ered every tenth hypercube of the original data set for the
join. Table 2 depicts the result where GESS performs the
entire join in only 41 seconds (& = 0.0001) whereas MSJ per-
forms the join on the sample in 56 seconds. For ¢ = 0.001,
our algorithm takes 46 seconds, whereas the runtime of MSJ
rises to 398 seconds. Overall, GESS is 8 times faster than
MSJ for that experiment.

The number of results for a self-join on CAD for £ = 0.001
is already 4.1 million which is surprisingly large. Under
the uniformity and independent assumption, the number of
expected tuples would be only 1.31 - 107** « 1. This is
a strong indication that the true dimensionality [12] of the
data is much lower.

In order to illustrate the dramatic performance improve-
ments of GESS, we varied the replication strategy of our
algorithm. Figure 12 shows the runtime as a function of
the parameter k. Recall that hypercubes are split when at
most k hyperplanes are hit. For £ > 3 the curve remains
almost constant (770 seconds). For k = 2 however the curve
rises to 1,010 seconds. For & = 1 the execution time was

IF

100000

10000

1000

runtime (seconds)

10°
10®
107
10°
10°
10*
10?
10?
10!

10°

10°

1072 |-

1074
107°
1078
10—10

10712

(a) replication allowed at levels I < 2

IF

100 ‘ .7
,/‘/-/
R
7
10 /'/'/ g = 1074
- e=10"2
7 e=10_2----
/ o e=10"1 ——
' ! ! |
1
2 3 4 5
k

(b) replication only allowed at level I =0

Figure 10: Distance-computations: Improvement-factor IF for GESS over MSJ

mmMmm

NIl

(a) replication allowed at levels [< 2

10°
1072 -

1074

10~

108

mmmn
11

10710

—12
1077 1 2 3

(b) replication only allowed at level [= 0

Figure 11: Memory requirements of GESS as a function of k¥ (k = 0: MSJ)

O p—
(=2}

Figure 12: Self-join on CAD for various k (k = 0:

MSJ)

4,427 seconds. This demonstrates that a modest kind of
replication dramatically improves the performance of the al-
gorithm. Overall, the replication rate was always less than
14%.

The overhead of the reference point method was irrelevant
in most experiments. In the worst case of the experiments,
15% of the total runtime was spent for duplicate removal.

7. CONCLUSIONS

In this paper, we discussed different methods for process-
ing similarity joins in high-dimensional spaces. We pre-
sented a new method (GESS) which employs a modest de-
gree of replication to improve its overall runtime. The per-
formance of GESS is compared to MSJ, analytically and
experimentally. In our analytical model as well as in our ex-
periments we observed that GESS clearly outperforms MSJ.

Our experiments show the tremendous potential of our
approach. As we have seen, the replication strategy used
for GESS plays an important role to achieve a good trade-
off between replication and the improvement factor IF. For
practical purposes it is useful to find an ‘optimal’ strategy
that determines the replication strategy dynamically. We
are currently investigating dynamic and adaptable replica-

tion strategies that guarantee a lower bound for replication.
These strategies also exploit the actual data distribution of
the input relations and can easily be integrated in GESS.

Our future work also examines the applicability of com-
pressed representations of feature vectors [24]. Furthermore,
we are interested in integrating the fractal dimension in our
cost models.

8. ACKNOWLEDGMENTS

We would like to acknowledge Christian Bohm for mak-
ing available the data sets used in the experiments. Fur-
thermore, we thank Bjorn Blohsfeld for discussions on this
topic.

9. REFERENCES

[1] J. Ashley, M. Flickner, J. Hafner, D. Lee, W. Niblack,
and D. Petkovic. The Query By Image Content
(QBIC) System. In ACM SIGMOD, page 475, 1995.

[2] A. Belussi and C. Faloutsos. Self-Spacial Join

Selectivity Estimation Using Fractal Concepts. In

TOIS, volume 16, pages 161-201, 1998.

S. Berchtold, C. Bohm, D. Keim, and H.-P. Kriegel. A

Cost Model For Nearest Neighbor Search in

High-Dimensional Data Space. In PODS, pages 7886,

1997.

[4] J. Bercken, B. Blohsfeld, J.-P. Dittrich, J. Kramer,

T. Schéfer, and B. Seeger. XXL — A Lijbrary
Approach to Supporting Efficient Implementations of
Advanced Database Queries. In VLDB, 2001.

[5] J. Bercken, J.-P. Dittrich, and B. Seeger. javax.XXL:
a prototype for a library of query processing
algorithms. In ACM SIGMOD, page 588, 2000.

[6] J. Bercken, M. Schneider, and B. Seeger. Plug& Join:
An easy-to-use Generic Algorithm for Efficiently
Processing Equi and Non-Equi Joins. In EDBT, pages
495-509, 2000.

[7] C. Béhm, B. Braunmiiller, M. M. Breunig, and H.-P.
Kriegel. High Performance Clustering Based on the
Similarity Join. In CIKM, pages 298-313, 2000.

[8] C. Béhm and H.-P. Kriegel. A Cost Model and Index
Architecture for the Similarity Join. In ICDE, pages
411-420, 2001.

[9] W. Cohen. Data integration using similarity joins and
a word-based information representation language. In
TOIS, volume 18, pages 288-321, 2000.

[10] http://tilde-hoschek.home.cern.ch/~hoschek-
/colt/index.htm.

[11] J.-P. Dittrich and B. Seeger. Data Redundancy and
Duplicate Detection in Spatial Join Processing. In
ICDE, pages 535-546, 2000.

[12] C. Faloutsos, B. Seeger, A. J. M. Traina, and
C. Traina Jr. Spatial Join Selectivity Using Power
Laws. In ACM SIGMOD, pages 177-188, 2000.

[13] D. Knuth. The Art of Computing, vol. 3 — Sorting and
Searching. Addison-Wesley, 1973.

[14] N. Koudas and K. Sevcik. Size Separation Spatial
Join. In ACM SIGMOD, pages 324-335, 1997.

[15] N. Koudas and K. Sevcik. High Dimensional Similarity
Joins: Algorithms and Performance Evaluation. In
ICDE, pages 466-475. (Best Paper Award), 1998.

)

[16] N. Koudas and K. Sevcik. High Dimensional
Similarity Joins: Algorithms and Performance
Evaluation. TKDE, 12:3-18, 2000.

[17] M.-L. Lo and C. V. Ravishankar. Spatial Hash-Joins.
In ACM SIGMOD, pages 247-258, 1996.

[18] J. Orenstein. Spatial Query Processing in an
Object-Oriented Database System. In ACM SIGMOD,
pages 326-336. ACM Press, 1986.

[19] J. Orenstein. An Algorithm for Computing the
Overlay of k—Dimensional Spaces. In SSD, pages
381-400, 1991.

[20] J. Patel and D. DeWitt. Partition Based
Spatial-Merge Join. In ACM SIGMOD, pages
259-270, 1996.

[21] H. Samet. The Design and Analysis of Spatial Data
Structures. Addison-Weseley, 1990.

[22] D. Scott. Multivariate Density Estimation.
Wiley-Interscience, 1992.

[23] K. Shim, R. Srikant, and R. Agrawal.
High-Dimensional Similarity Joins. In ICDE, pages
301-313, 1997.

[24] R. Weber, H.-J. Schek, and S. Blott. A Quantitative
Analysis and Performance Study for Similarity-Search
Methods in High-Dimensional Spaces. In VLDB, pages
194-205, 1998.

APPENDIX
A. NOTATION
[Symbol | Definition
d dimension
5 query distance
U unit space: U = [0,1)?
H, 4(x) d-dimensional hypercube of length ¢ in
each dimension for feature vector x
H(z) = H.a(z)
msl maximum split level
n number of direct subspaces (for an n-ary
recursive partitioning)
P(D) recursive partitioning of D
Codep(X) | code of a subspace X € P(D)
l recursion level of the recursive partitioning
(entire space: 1 =0)
mL maximum level of the recursive
partitioning
k maximum number of hyperplanes a
hypercube is allowed to intersect
R, S name of input relations
|R|,1S] number of pages of relation R (5)
R;,S; subset of elements of data set R (S) that
is assigned to level ¢
M number of pages available in main memory
DC number of distance computations for a join
IF improvement factor for GESS over MSJ in
terms of distance computations

Table 3: Notation used in this paper

