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Abstract. With the exponential growth of moving objects data to the Gigabyte
range, it has become critical to develop effective techniques for indexing, updat-
ing, and querying these massive data sets. To meet the high update rate as well
as low query response time requirements of moving object applications, this pa-
per takes a novel approach in moving object indexing. In our approach we do
not require a sophisticated index structure that needs to be adjusted for each in-
coming update. Rather we construct conceptually simple short-lived throwaway
indexes which we only keep for a very short period of time (sub-seconds) in
main memory. As a consequence, the resulting technique MOVIES supports at
the same time high query rates and high update rates and trades this for query
result staleness. Moreover, MOVIES is the first main memory method supporting
time-parameterized predictive queries. To support this feature we present two al-
gorithms: non-predictive MOVIES and predictive MOVIES. We obtain the surpris-
ing result that a predictive indexing approach — considered state-of-the-art in an
external-memory scenario — does not scale well in a main memory environment.
In fact our results show that MOVIES outperforms state-of-the-art moving object
indexes like a main-memory adapted Bx-tree by orders of magnitude w.r.t. up-
date rates and query rates. Finally, our experimental evaluation uses a workload
unmatched by any previous work. We index the complete road network of Ger-
many consisting of 40,000,000 road segments and 38,000,000 nodes. We scale
our workload up to 100,000,000 moving objects, 58,000,000 updates per second
and 10,000 queries per second which is unmatched by any previous work.

1 Introduction

Indexing support for moving objects is a crucial requirement in domains such as car
tracking [18], airplane surveillance [45], mobile phone tracking [1], emergency ser-
vices [10], social networking [24], and gaming engines [49]. In these applications an
update may be a car/airplane/phone sending a message on its new position. A query
may be a range query, a nearest-neighbor query, or a time-parametrized range query
asking for predicted positions of moving objects at a future time tq. Queries are issued
either by car/air traffic control or by users themselves. All of the above applications face
a principal problem: how to support efficient query processing under high update rates.

Traditionally, index creation has been considered an extremely costly process. For
that reason, research on moving object indexes has been centered around creating so-
phisticated index structures. These indexes are created once, kept, and then modified



according to incoming updates. This has led to a plethora of complex index structure
proposals in the past. However, with the rise of large main memories and fast multi-core
CPUs this “natural law” of keeping a moving object index can be questioned.

We present a novel main-memory method termed MOVIES (MOVing objects Indexing
using frEquent Snapshots) that supports time-parameterized (predictive) queries and
is at the same time space-, query-, update-, and multi-CPU-efficient. At its core our
method MOVIES resembles the approach taken by a cinematographer: as it is impossi-
ble to capture continuously moving data with any camera in one image, a cinematogra-
pher has to take a series of still images at a given frame rate. As long as the frame rate
exceeds the inertia of the human eye (i.e., at least 24 frames per second), an illusion of
continuous movement is created. We follow exactly the same approach: we try to pro-
vide as many still index images of the data as possible. For a very short period of time
we use that index to answer incoming queries. After that, we throw that index away.
As long as the index build rate is high, an illusion of a continuously up-to-date index
will be created. We will show that — surprisingly — index creation can be a matter of
subseconds even for datasets comprising hundreds of thousands of moving objects. For
instance, we will demonstrate that index creation for 1 million moving objects (a com-
mon data set size used in recent moving objects studies, see Section 6.4) takes as little
as 0.16 seconds on a single computing core allowing for six index rebuilds per second.
The price we have to pay for these features is slightly out-of-date (stale) query results,
i.e., even though queries are executed immediately in our approach, query results may
not consider the most recent updates. However, we will show that even for massive
data sets this query result staleness may be reduced to (sub-)seconds. This meets by far
the demands of real applications. For instance, state-of-the-art flight control in Europe
currently works with a staleness of 5 seconds [39].

1.1 Contributions

In summary, this paper makes the following contributions:

1. We provide a novel approach termed MOVIES (MOVing objects Indexing using frEquent
Snapshots) to effectively index moving objects. As described above MOVIES resembles the
approach taken by a cinematographer by creating a series of different indexes each second.
Like that we provide at all times a read-optimized index not suffering from update handling.

2. MOVIES is the first main-memory moving object index to support time-parameterized queries.
This allows users to pose predictive queries asking for predictive results at a future time tq.
Previous main memory approaches such as [51] did not support this type of query. We will
present two different MOVIES variants to support these type of queries: Non-Predictive In-
dexing MOVIES (NPI) and Predictive Indexing MOVIES (PI). We will show that MOVIES
NPI performs better than MOVIES PI for high update rates. This is a surprising result as pre-
dictive indexing approaches are considered state-of-the-art for external memory methods.

3. We present techniques to make update handling efficient. As we collect incoming updates in
a buffer, the cost for collecting the updates is very small. We will show that different buffer
organizations have different impact on the overall performance of MOVIES. Therefore, we
will propose two more variants of our algorithm: Logged MOVIES and Aggregated MOVIES.

4. We provide a thorough experimental study of MOVIES using standard hardware and realis-
tic data sets unmatched by any previous work. Our experiments show that MOVIES scales
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well up to 25 million moving objects on a single machine. We show that MOVIES provides
excellent query response times while at the same time being able to process huge amounts
of updates. In addition, we show that MOVIES outperforms state-of-the-art indexing meth-
ods like the Bx-tree by orders of magnitude w.r.t. the number of queries and updates being
handled — even though the latter methods have been adapted to work effectively in main
memory. Finally, we evaluate a distributed implementation of MOVIES indexing 100 million
moving objects on a small cluster of shared-nothing machines. Note that the data sets used
in our experiments are 10 times larger than in the biggest study available [23] and at least
100 times larger than in all other studies.

This paper is structured as follows. The following section presents preliminaries.
Sections 3&4 present MOVIES. Section 5 presents our experimental evaluation. Sec-
tion 6 discusses related work and its relationship to MOVIES.

2 Preliminaries

2.1 Problem Statement

We consider a data set of N moving objects in a two-dimensional space of data of a
domain |X | × |Y | where |X | (resp. |Y |) represents the number of different positions in
the horizontal (resp. vertical) dimension. Extending our technique to more dimensions
is straightforward. Similarly to [17], we assume a discrete space of 216 × 216 = 232

different positions. Each moving object is identified by a unique key termed an OID.
Each moving object emits updates on its current location (x,y) and its speed vector−→sv by sending an (x,y,−→sv,OID)-tuple to central indexing server(s). Like in [17], we
assume that objects travel at a maximum speed Smax and are guaranteed to send updates
at least every t∆max seconds. We assume that indexes are queried with two-dimensional
predictive range queries Q(r, tq) specifying a range r = [xlow;xhigh]× [ylow;yhigh] and a
query time tq. Note that other query types such as predictive k-nearest-neighbor may
easily be derived from predictive range queries (see e.g. [17]).

2.2 Formal Argument

In this section we provide a formal argument to illustrate the core benefit of our ap-
proach. We do not strive to provide a full-blown cost model but rather focus on the key
aspects. For realistic moving objects scenarios the amount of updates will be in the tens
of millions per second. We will develop a method that does not trade query performance
for update performance as done in several existing methods. Consider a simple index
structure organizing a sorted mapping spatial position 7→ OID (binary range search on
a B+tree or any cache-optimized tree). We assume that the spatial position is linearized
using a linearization function (see Section 3.3). The cost for both querying and updat-
ing in-place are of the order O(log N) where N is the number of entries. An update in a
positional index consists of deleting the old entry and creating a new entry. Thus in the
worst case we need two logarithmic traversals. We derive a cost formula Cupdate-in-place =
2 · c1 · log2 N where c1 is a hardware-dependent constant. Similarly, the initial cost for
bulkloading for an index is of the order O(N log N), which translates to a cost formula
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Fig. 1. expected performance of MOVIES versus update-in-place

Cbulkloading = c2 ·N log2 N where c2 is a hardware-dependent constant. Now let’s assume
that instead of performing updates in-place we collect W updates in a separate structure
with O(1), i.e., Carray update = c3. We will peridodically rebuild a new index from that
structure. The cost for this is Ccollect and rebuild = W ·Carray update +Cbulkloading. When will
this be cheaper than update-in-place? We obtain W · c3 + c2 ·N log2 N ≤W ·2c1 · log2 N
⇒ c2 ·N log2 N ≤W · (2c1 log2 N− c3)⇒W ≥ (c2 ·N log2 N)/(2c1 log2 N− c3). Now,
we may estimate upper bounds for the constants assuming a single core and the index to
be limited to 16 million elements as c1 = 73.6ns, c2 = 8.9ns, and c3 = 112.5ns. Thus we
receive W ≥ (8.9 ·N log2 N)/(2 ·73.6 · log2 N−112.5). For an index of N = 1,000,000,
the collect and rebuild approach will already be cheaper when the number of updates
reaches W = 62,872. Also note that the query processing costs in both approaches are
exactly the same. We just argued on how to improve update cost without touching query
cost. On the contrary, the collect and rebuild approach could even be improved to build
read-optimized indexes. That would additionally improve the query response time over
an update-in-place approach. Now let’s examine the maximum number of updates sup-
ported by the different methods. How many updates can we expect to support in a col-
lect and rebuild approach? We may rebuild the index every Tframe time > Ccollect and rebuild
seconds. This can be rewritten to Ccollect and rebuild/Tframe time ≤ 1 ⇒W ·Carray update +
Cbulkloading ≤ Tframe time ⇒W ≤ (Tframe time−Cbulkloading)/(Carray update). The maximum
number of updates processed per second can then be computed as Umax = W/Tframe time
which is limited by the upper bound 1/Carray update. Assume we allow for a Tframe time
of 3Cbulkloading, then we obtain the function displayed in Figure 1(a). The figure shows
that we may expect to gain an order of magnitude over update-in-place. The price we
pay for that is query result staleness which is limited by 2Tframe time. Figure 1(b) shows
that even for an index of 1,000,000 elements staleness will remain below a second even
when using only a single computing core.

3 MOVIES

This section presents the MOVIES indexing algorithm (MOVing objects Indexing using
frEquent Snapshots). As stated in the Introduction, our method resembles the approach
taken by a cinematographer: we try to create as many still index images as possible.
This generates the illusion of a continuously up-to-date index.
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3.1 Algorithmic Walkthrough

The MOVIES algorithm is based on in-
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). As
soon as the new index I45 is built, we start a new frame, e.g., Frame 46. In this frame we
use the newly built read-only index I45 from Frame 45 to answer all incoming queries.
We keep an update buffer U46 to collect incoming updates. In addition, we build a new
read-only index I46 based on the updates collected in U45 during T45. Again, depending
on whether the update buffers contain updates for all OIDs this index build has to con-
sider information available in index I45. As soon as the index is built, we start a new
frame, e.g., Frame 47 (not shown) which is similar to Frame 45.
3.2 Comparison to Differential Files

The idea of collecting updates in a separate space and applying them in a batch was first
used in the context of relational databases more than 30 years ago [38]. The idea of that
paper was to collect changes in a separate differential file and merge that file regularly
with the existing external memory index. Since then differential files were extended
in multiple ways [29,16,28] and became state-of-the-art for read-mostly environments
like data warehouses (DWH) [46] as well as desktop [25], enterprise [46], and web
search [11] engines.

In contrast to all of these approaches MOVIES differs as follows:

1. For a moving objects application the query result staleness of a file-based method as fol-
lowed in other applications [46,25,11] would be unacceptable. For moving object indexing
we require query result staleness to be below a few seconds (e.g., for an aircraft surveillance
scenario it should be below 5 seconds [39]). Therefore we have to optimize our algorithm for
keeping staleness low. This can only be achieved by keeping the data entirely in main-memory.

2. In our scenario moving objects are guaranteed to send an update at least every t∆max seconds.
This was used in similar studies, e.g. [17]. Therefore for certain situations, e.g. t∆max < Ti we
may completely ignore the information available in the old index: we simply need to build
an index image from the update buffer. Therefore, in contrast to differential file-based ap-
proaches [29,16,28], in MOVIES there is no need to perform a costly merge with the previous
index. An index merge will only be used as a fallback.

3. Finally, in order to support time-parameterized queries we need to introduce timestamp-
consistent predictive indexes (MOVIES PI). Thus, instead of indexing data as-is as in dif-
ferential file-based approaches, we will predict data to a future point in time into the index.
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3.3 MOVIES Core Algorithm

MOVIES core algorithm is displayed in Figure 3.
It takes as input a stream of updates StreamU , a stream of queries StreamQ, and

a bootstrapTime interval. The algorithm starts by creating a new update buffer U0
(Line 1). Then the stream of updates StreamU is routed to that buffer (Line 2). An
empty index I0 is created in Line 3.

Then the algorithm waits for a

we require query result staleness to be below a few seconds (e.g., for an aircraft surveillance
scenario it should be below 5 seconds [39]). Therefore we have to optimize our algorithm for
keeping staleness low. This can only be achieved by keeping the data entirely in main-memory.

2. In our scenario moving objects are guaranteed to send an update at least every t∆max seconds.
This was used in similar studies, e.g. [17]. Therefore for certain situations, e.g. t∆max < Ti we
may completely ignore the information available in the old index: we simply need to build
an index image from the update buffer. Therefore, in contrast to differential file-based ap-
proaches [29,16,28], in MOVIES there is no need to perform a costly merge with the previous
index. An index merge will only be used as a fallback.

3. Finally, in order to support time-parameterized queries we need to introduce timestamp-
consistent predictive indexes (MOVIES PI). Thus, instead of indexing data as-is as in dif-
ferential file-based approaches, we will predict data to a future point in time into the index.

3.3 Detailed Algorithm

MOVIES Core Algorithm is displayed in Figure 1.

Algorithm 1: MOVIES Core Algorithm
Input: Stream of updates StreamU
Stream of queries StreamQ
TimeInterval bootstrapTime
U0.create()1
StreamU .setDestination(U0)2
I0.create()3
wait(bootstrapTime);4
for

(
Integer currentFrameID = 1; ¬should_terminate

)
do5

UcurrentFrameID.create()6
StreamU .setDestination(UcurrentFrameID)7
StreamQ.setDestination(IcurrentFrameID−1)8
if currentFrameID≥ 2 then9

IcurrentFrameID−2.destroy()10
end11
if ("may ignore old index") then12

IcurrentFrameID ← buildIndex(UcurrentFrameID−1)13
else14

IcurrentFrameID ← buildIndex(UcurrentFrameID−1, IcurrentFrameID−1)15
end16
UcurrentFrameID−1.destroy()17
currentFrameID = currentFrameID+118

end19

It takes as input a stream of updates StreamU , a stream of queries StreamQ, and
a bootstrapTime interval. The algorithm starts by creating a new update buffer U0
(Line 1). Then the stream of updates StreamU is routed to that buffer (Line 2). An empty
index I0 is created in Line 3. Then the algorithm waits for a certain amount of time spec-
ified by bootstrapTime. During that time, however, incoming updates are collected in
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Fig. 3. MOVIES Core Algorithm

certain amount of time specified by
a bootstrapTime. During that time,
however, incoming updates are col-
lected in update buffer U0. Lines 5–
15 show the indexing loop used to
create the sequence of index frames.
This loop will be repeated until a
global flag should_terminate is
set to true (Line 5). The loop keeps
a counter currentFrameID for the
current frame ID. Inside the loop
an index frame starts by creating
a new update buffer UcurrentFrameID
(Line 6). The stream of updates is
routed to the new update buffer (Line 7).
The stream of queries is routed to the index created in the previous iteration (Line 8). For
the first loop iteration this index will be the empty index I0. In Line 9 we check whether
the currentFrameID is two or higher. If that is the case, we destroy the index built in in-
dex frame currentFrameID−2 (Line 10). After that we check whether we may ignore
the data available in the old index (Line 12), e.g., this may happen if all elements in
the old index became outdated by elements in the update buffer. If that check succeeds,
we simply call the buildIndex operation on the update buffer (Line 13) otherwise we
create a new index IcurrentFrameID also using information from the old index (Line 15).
After that we destroy the update buffer filled in the previous frame (Line 17). Finally,
we increase the currentFrameID counter by one and continue looping (Line 18).
Organization of Update Buffers This section describes the organization of update
buffers. As we want to handle high update rates, we have to make sure that the update
buffers do not exceed the available main memory. We solve this as follows. For high
update rates the update buffers may contain several updates for the same OID, i.e., the
update buffer may be considerably larger than the original index. As the aggregate of
updates to an OID is sufficient for query processing (e.g., the most current position of a
moving object), it makes sense to implement update buffers Ui by aggregation buffers
Ûi, organized using OIDs as keys. For each OID, Ûi only keeps a MIN aggregate, i.e.,
the last update received for this moving object. In our approach updates are written
to aggregation buffers Ûi immediately when they arrive. We implemented aggregation
buffers using arrays of size N where the slot at position i stores the aggregate of object
i = OID. Note that other implementations are possible, e.g., any hash table. This ensures
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constant insert time for updates. We refer to this variant as Aggregated MOVIES. The
algorithm based on FIFO update buffers is termed Logged MOVIES.
Organization of Read-Only Indexes As read-only index we use a state-of-the-art spa-
tial indexing method. We focus on a technique that is at the same time simple and
efficient. Therefore we have chosen linearized kd-tries [47,32]4. This index was used in
many papers in different variants (e.g., [36,31,9,17]) and was shown to outperform com-
peting approaches. The core idea of a linearized kd-trie is to simulate a pointer-based
index structure. This is achieved by assigning each node of a virtual kd-trie a unique
identifier termed a locational code. Locational codes are based on a space-filling curve
like the z-curve [47,32] (see Figure 4(b)) or the Hilbert curve [14]. These recursive
space-filling curves enumerate a multi-dimensional space (i.e., the nodes of the kd-trie,
see Figure 4(a)) with a one-dimensional curve (see Figure 4(b)). For each object that
needs to be managed by an index, it then suffices to compute its locational code, i.e., the
virtual node it belongs to in the kd-trie. This calculation is independent of the locational
codes of other objects. Therefore, at no point in time it is required to actually create a
pointer-based kd-trie. As the locational codes are one-dimensional, they are ordered to
provide efficient query processing. The resulting codes plus the data are then stored in
a sorted index (see Figure 4(c) using w = 2 bits per dimension). Note that locational
codes may be inlined with the data to avoid extra storage cost. Both point and range
queries are efficiently supported. The latter are crucial for our scenario as several other
types of queries such as nearest neighbor queries may be based on range queries (see
e.g. [17]). Moreover, kd-tries are not limited to two dimensions but also work well for
high dimensional spaces. Also recall that in contrast to grid-based indexes (e.g., as used
in [51]) which would need to store an exponential number (1/grid_length)d of pointers
to inclusion lists, an approach based on locational codes will for all d only require N
indexing slots. Thus, our method can easily be extended to higher dimensional data.

4 MOVIES Query Processing

4.1 Time-Parameterized Query Processing

A time-parameterized query Q(tq) asks for object positions in the range ([xlow;xhigh]×
[ylow;yhigh]) at a time tq. In order to answer these queries, we must transport objects to
their predicted positions at time tq. This can be done at indexing time, which we term
Predictive MOVIES (PI MOVIES) or at querying time, which we term Non-Predictive

4 Following the terminology of Donald Knuth [20] a trie partitions the data space whereas a tree
partitions the data.
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MOVIES (NPI MOVIES). Both strategies work for both Logged and Aggregated MOVIES
resulting in a total of four different combinations.

Predictive MOVIES (PI) Indexing Strategy. For each index build we index all data
w.r.t. a single point in time tindex > tu. We term tindex the index time. Thus, for every
incoming update u we index the moving object at a predicted position (x,y)+−→sv(tindex−
tu). Here, we may avoid any extra storage space by translating objects immediately
when an update arrives. However, for each incoming update we have to compute the
predicted position — which may be costly. After that, the timestamp for the update
may be dropped. If during fallback an object is encountered that has not received an
update (Line 22 of the buildIndex algorithm), that object is simply translated to a new
position using the new index time.
Query Strategy. As tq may be either larger or smaller than tindex we have to consider
three cases:
1. tq < tindex: the objects have to be translated to an earlier time,
2. tq > tindex: objects have to be translated to a later time (see also [17]),
3. tq = tindex: objects do not have to be translated.

For cases (1)&(2) we rewrite Q(tq) to consider the maximum distance ε := Smax ·
|tq − tindex| an object may have travelled relative to the index time. Every Q(tq) is
rewritten to Q(tq)′ := [xlow−ε;xhigh +ε]× [ylow−ε;yhigh +ε]. Q(tq)′ is then postfiltered
w.r.t. tq and their respective speed vectors −→sv as obtained from the index.
Choice of Index Time. Let Q̄ = {Q1(t1

q ), ..,Qk(tk
q)} be the set of queries arriving during

a single indexing frame of MOVIES. To minimize query enlargements and therefore the
performance penalty for large range queries, we wish to minimize the sum of query
window areas added due to enlargement, or alternatively the term ∑k

i=1 |t i
q − tindex|2.

Assume, for simplicity, that all queries ask for a fixed time into the future, i.e., tq =
tnow +∆t. After being rebuilt, an index receives queries during one frame time Tf rametime.
To produce balanced query enlargements, the index time should be ∆t + Tframe time/2
ahead of the time the index is ready for querying. In order to achieve that, we must
set the time of the update buffer that will be used to build a new index appropriately.
An update buffer is used to collect updates two frames before being used to build a
new index (see Figure 3). Therefore, the index time to be used for an update buffer
collecting updates in the next frame should be set to tindex = tnow + 2Tframe time +(∆t +
Tframe time/2) = tnow +2.5Tframe time +∆t.

Non-Predictive MOVIES (NPI) Indexing Strategy. For each index build we index
each index entry w.r.t its timestamp tu. In order to do this, we need to keep for each
update its corresponding timestamp. Thus, we require slightly more storage space, but
do not have to compute predicted positions at indexing time.
Query Strategy. We use query enlargement like with Predictive MOVIES. However, as
objects are indexed with different last update times, we must perform query enlargement
with respect to the time of the oldest update considered in the index, i.e., ε := Smax×
|tq− tmin|. As calculating tmin by scanning the timestamp array has prohibitive cost, we
provide a bound on tmin. When an update arrives, it takes at most two times the frame
time Tframe time for it to appear in the index used for querying (see Figure 3). As an
update for each object must arrive within t∆max, then tmin ≥ tnow− (t∆max +2Tframe time).
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5 Experiments

This section presents a thorough experimental analysis of MOVIES. We explore various
aspects of our approach and compare it with state-of-the-art approaches. The goals of
our experiments are:
1. Determine the maximum supported update rate of MOVIES when scaling the index

size (Section 5.3).
2. Determine query throughput of MOVIES when scaling the update rate (Section 5.4).
3. Determine the performance of MOVIES when implemented on a cluster of shared-

nothing machines (Section 5.5).

5.1 Setup

All experiments were performed on servers having each two 2.4 GHz Dual Core AMD
Opteron 280 processors, i.e., four cores in total, and 6 GB of main memory. We used
two separate servers M1 and M2 to generate updates and queries. These updates and
queries were sent over the network and received by servers termed processing nodes
(PN1–PN4) that did the actual indexing. M1 and M2 were each connected to the switch
by one network cable and in addition with one network cable each directly to PN3 (PN4
respectively). All network links supported 1 Gbit/s.

For the single instance experiment we used
parameter setting

index size N 100,000 . . . 6,400,000 . . . 100,000,000
update rate V 0 /s . . . 58,000,000 /s

query rate 0 /s . . . 1,000 /s . . . 10,000 /s
query window size qw 1 km×1 km .. 10 km×10 km

# road network segments 39,509,805
# road network nodes 37,967,339

data region 640 km×863 km
index granularity 26.3 m×26.3 m

Smax 60 m/s
t∆max ≤ N/V

Fig. 5. Settings

one processing node PN1. For the paralleliza-
tion experiment we used up to four processing
nodes PN1–PN4. All code used for the exper-
iments was implemented in Java 5. In our im-
plementation, we avoided complex object types
whenever possible and used primitive Java types.
To make maximal use of the four cores provided
by each machine, we implemented a multi-threaded
variant of MOVIES. For the experiments in Sections 5.3 to 5.5 evaluating MOVIES, we
waited until at least 8 re-indexing phases were completed. Then we measured at least
10 re-indexing phases and report the average.

5.2 Data and Queries

Our experiments were inspired by the scenario ‘index all cars in Germany’ which com-
prises 58M cars [22]. We obtained a commercial data set containing the complete road
network of Germany [44]. This data set consists of 38 million nodes and 40 million road
segments. The geography of Germany covers 640 km x 863 km. We assumed cars to
travel at a maximum speed of Smax = 60m/s= 216km/h. As in similar studies [26,27,34]
we initially used the moving object generator of [5]. However, it turned out that that
generator does not scale for the massive workloads considered in this paper. In particu-
lar, large number of nodes and road segments are not possible. Therefore we developed
our own generator based on the ideas of [5]. This means that we used the same mov-
ing object placement strategy network-based approach (NB). It places cars using the
same skewed distribution as the roads and nodes themselves. We then moved cars on
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Fig. 7. Scalability in index size for high update rates [query rate=1,000/s], single pro-
cessing node

the network by assigning each car a constant random direction which it would try to
follow on the network. This avoids the overheads of doing Dijkstra-computations for
each car. This generates similar traces as in [5], but at much lower cost. Our trace gen-
erator is open source and available from sourceforge at http://moto.sourceforge.net/ . If
not mentioned otherwise, a data set of 6.4 million moving objects was used on MOVIES
experiments with a single processing node. For scalability experiments on a single pro-
cessing node, we used up to 25 million moving objects (raw size = 200MB).

For the parallelization experiment we used up to 100

Fig. 6. Road network of
Germany

million moving objects (raw size = 800MB). As outlined
in the Introduction, we assumed all data and indexes for
all methods to fit into main memory. We evaluate time-
parameterized predictive range queries. Note again that
other query types such as time-parameterized predictive
k-nearest-neighbors may be inferred from predictive range
queries (see [17]). We used a query window size corre-
sponding to the size of a small town center like Olden-
burg which has an extension of roughly 1,000 m × 1,000
m. Bigger query windows did not substantially change
our results and therefore we do not show those results.
Query centers were chosen using the NB strategy [5] thus
creating a skewed distribution on queries. If not mentioned otherwise, we set a query
rate of 1,000 queries per second and a query time tq = tnow +1.5t∆max. Figure 5 summa-
rizes the settings.

5.3 Scalability in Index Size

The goal of this experiment is to understand the maximum update rates supported by
MOVIES when scaling the size of the data set. We compare MOVIES to baseline in-
dex structures, including binary search trees and B+-trees. Furthermore, we compare
MOVIES against a state-of-the-art moving object index: the Bx-tree [17]. As all tree-
based methods are hard to parallelize without considerably sacrificing performance
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(locking), we parallelized all tree-based methods to obtain lock-free methods as follows:
we partitioned the data by OID into four disjoint partitions, and used a separate tree and
thread to index each partition as suggested in [40]. Thus, the tree-based methods could
make maximal use of the four cores available on a server. All methods evaluated in this
and the following experiments could make use of the same amount of main memory
which was set to 5.5 GB. In particular, all tree-based methods resided completely in
main memory. Therefore, at no point any disk-I/O was performed. We tuned the node
size of the trees to obtain the best possible performance in a separate experiment. Only
the best tree-based methods are displayed.

Figure 7(a) shows the results of a scalability experiment where the index size is
varied up to 25.6 million moving objects. We kept a fixed query rate of 1,000 time-
parameterized queries/s and display the maximum update rate supported by each in-
dexing method. The results show that both variants of MOVIES outperform all other
methods. Figure 7(a) shows that all tree-based methods degrade sharply with growing
index sizes. The binary search tree was not able to scale beyond 3.2 M objects as then it
could not meet the query rate anymore. For the B+-tree, we experimented with several
values of k and k∗. However, the best B+-tree we could devise (k = k∗ = 16) was not
able to scale beyond 12.8M moving objects. For 12.8M the B+-tree could only handle
0.6M updates/s. Similarly, for the Bx-tree we performed a separate experiment varying
the number of phases n and display only the best version of the Bx-tree we could devise
(k = 16 and n = 2). Interestingly, the Bx-tree was also not able to scale beyond 12.8M
moving objects. The Bx-tree even performed slightly worse than the best B+-tree ex-
cept for N=12.8M. This is due to the fact that the Bx-tree incurs overhead compared to
the B+-tree as it has to compute predictions for each incoming update at indexing time.

In the experiment, in contrast to
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Fig. 8. Average staleness when scaling index
size: comparison of four different variants of
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all other methods, MOVIES Logged
with Non-Predictive Indexing (NPI)
shows update rates of around 14 mil-
lion updates/s for index sizes up to
25.6M objects. This value is close to
the network limit of 14.7 million up-
dates/s. MOVIES Aggregated NPI shows
in average a slighlty smaller update
rate ranging from 11M to 14M up-
dates/s. However, MOVIES Aggregated
NPI performs still better than all tree-
based methods. For an index of size
of 12.8 M objects the improvement
of the best MOVIES variant over the best B+-tree and Bx-tree is factor 15. For an in-
dex size of 25.6 M only MOVIES was able to index the data meeting the query rate.
Interestingly, in this experiment the binary search tree performs even better for small
indexes than the Bx-tree. This is due to the high cost for computing predictions for each
incoming update. This is also evidenced when we compare the four different variants of
MOVIES using different indexing methods. Figure 7(b) displays the update throughput
for MOVIES when using different indexing schemes, i.e., either Aggregated or Logged
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MOVIES (Section 3.3), and either non-predictive (NPI) or predictive indexing (PI) (Sec-
tion 4.1). The figure shows that Logged MOVIES NPI has the best performance. In con-
trast, Logged MOVIES PI achieves only half of the throughput. This is due to the fact
that for predictive indexing each update has to be translated to a new position. This
is CPU-intensive and also explains why the Bx-tree performs worse than a standard
B+-tree: at extreme update rates, the computational cost of predictions offsets the gain
obtained by smaller query window enlargements.

Figure 8 shows the average staleness observed in the scaling experiment. The results
show that the staleness grows for larger index sizes. That is expected as an important
component of frame time is the time to sort the data in a new index. For MOVIES Logged
NPI the staleness grows up to 19 sec, for MOVIES Aggregated NPI it increases up to 7
sec. If the staleness has to be reduced, this can be achieved by scaling out on multiple
processing nodes. This is explored in Section 5.5.

5.4 Scalability in Update Rate

The goal of this experiment is to understand the maximum query rate supported by
MOVIES when scaling the update rate. We keep the index size constant at 6.4M objects
and vary the update rate. Figure 9 shows the result. The figure shows that the binary
search tree is only able to sustain a very low query rate. For update rates above 2.1M
updates/s this method is not able to execute any more queries and thus fails to scale
beyond this point. Similarly, we observe that for update rates between 0.1M to 1M
the best B+-tree is able to execute between 3,000 and 2,000 queries/s, respectively. For
higher update rates, however, the B+-tree degrades sharply: for an update rate of 4M up-
dates/s, the best B+-tree is only able to execute a small amount of queries and thus fails
to scale beyond this point. The Bx-tree has better query performance than the B+-tree
for update rates up to about 3M updates/s, but also fails to scale beyond 4M updates/s.
The MOVIES variants show an interesting behavior: The predictive variants outperform
the non-predictive variants in terms of query performance up to an update rate of 4M
updates/s, exhibiting query rates around 3,000 queries/s. Above 4M updates/s, how-
ever, the query performance of the non-predictive variants sharply increases up to 9,200
queries/s. This behavior can be explained by analyzing the trade-off between index-
ing predictions and performing query window enlargements. For modest update rates,
non-predictive methods must perform bigger query enlargements to compensate for the
relatively large value of t∆max. These enlarged queries impose significant computational
overhead. Predictive methods, on the other hand, aggressively reduce query window
enlargements by computing predictions for each update applied to the index. At high
update rates, however, we observe the opposite effect: predictive methods pay a high
computational cost for predicting every update applied to the index. The gain in query
window enlargements is not enough to offset these costs, because as t∆max is relatively
low, the enlargements performed by non-predictive methods are also relatively small. In
addition, non-predictive methods have lower computational cost for collecting updates.
Another effect may be observed for the non-predictive variants: at an update rate of
about 10M updates/s, the query rate drops to around 6,000 queries/s. This slight drop
in the query rate may be explained by the fact that at very high update rates, the cost
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to collect updates starts to become significant, draining CPU resources from both query
processing and index rebuilding.

The staleness for Logged MOVIES NPI
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stayed constant around 3 sec up to 7M up-
dates/s. For higher updates rates it increased
linearly up to 7.2 sec. For Aggregated MOVIES
NPI the staleness was constant around 2.5
sec. The predictive variants could not be scaled
beyond 8M updates/s and their average stal-
eness stayed between 2 to 3 sec. The rela-
tively high staleness for low update rates can
be explained as follows: If during one in-
dex rebuild MOVIES receives only few up-
dates, then MOVIES has to retrieve the old
data for many objects from the old index.
This leads to many random accesses to the
old index and therefore hurts rebuild perfor-
mance. The time needed to lookup old data goes down as the update rate increases and
reaches zero around 5M updates/s. Even though this effect would lead to decreasing
staleness, the staleness stays about constant, because processing the updates becomes
more expensive. In summary, this experiment shows that the MOVIES variants scale
well for high update rates. Of all methods, only MOVIES was able to scale up to 14M
updates/s. Note again that all methods completely resided in main memory.

5.5 Shared-Nothing Scale-Out

The goal of this experiment is to examine how MOVIES scales when increasing the num-
ber of processing nodes. In order to adapt the different methods to a shared-nothing
landscape, we horizontally hash-partitioned the data by OID. We keep the index size
constant at 25.8M and vary the number of processing nodes PN from one to four. As
our experiments with a single processing node have shown, the transfer limit imposed
by the network is a serious bottleneck. Therefore, we required a special network setup
as described in Section 5.1. With that setup we could transfer up to 58M updates/s to
four processing nodes while still being able to distribute queries. Figure 10(a) shows the
results. The NPI MOVIES variant Aggregated (resp. Logged) scales up to 47M (resp.
54M) updates/s. Figure 10(b) displays an experiment where we keep the index size con-
stant at 25.8M and keep the maximum update rate at 5M updates/s, which is supported
by the worst MOVIES method. We display the average staleness. The figure shows that
staleness goes down almost linearly if we increase the number of processing nodes. For
four processing nodes staleness goes below 3 seconds for all four variants of MOVIES.
In summary, this experiment shows that MOVIES scales linearly w.r.t. the maximum
number of updates and linearly w.r.t. to the average query result staleness.

In another experiment we used all four processing nodes for indexing. Figure 10(c)
shows the results. Similarly to the single instance experiment MOVIES outperforms
all other methods. All tree-based methods, including the Bx-tree degrade sharply for
growing index sizes. The tree-based methods fail to scale beyond an index of size 51M,

13



0
5E6

10E6
15E6
20E6
25E6
30E6
35E6
40E6
45E6
50E6
55E6
60E6

1 2 3 4m
a

x
 u

p
d

a
te

 r
a

te
 [

#
 u

p
d

a
te

s
 p

e
r 

s
e

c
o

n
d

]

number of processing nodes

Transfer limit
MOVIES Aggregated PI

MOVIES Aggregated NPI
MOVIES Logged PI

MOVIES Logged NPI

(a) max update rate: effects
of scaling number of pro-
cessing nodes [index size =
25.8E6]

 0

 2

 4

 6

 8

 10

 12

1 2 3 4

a
v
e

ra
g

e
 s

ta
le

n
e

s
s
 [

s
e

c
]

number of processing nodes

MOVIES Aggregated NPI
MOVIES Aggregated PI

MOVIES Logged NPI
MOVIES Logged PI

(b) average staleness: ef-
fects of scaling number
of processing nodes [index
size = 25.8E6]

 1e+06

 1e+07

 1e+08

 1e+06  1e+07  1e+08

u
p

d
a

te
 r

a
te

 [
#

 u
p

.p
e

r 
s
e

c
, 

lo
g

 s
c
a

le
]

index size [# elements, log scale]

transfer limit
binary search tree

B+-tree
Bx-tree

MOVIES Aggregated NPI
MOVIES Logged NPI

(c) Scalability in index
size on four shared-nothing
servers: Comparison of
MOVIES with binary search
tree, B+-tree, and Bx-tree
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i.e., 12.8M moving objects per processing node. In contrast, MOVIES scales up to 102M
moving objects. Furthermore, for index sizes up to 51M, Logged MOVIES sustains an
update rate close to the network limit of 58M updates/s. For 51M moving objects the
improvement of MOVIES over the best B+-tree is factor 15; the improvement over the
best Bx-tree is factor 11. The average staleness of all the MOVIES variants is the same
as shown for the single instance experiment, but the index size is four times larger. See
Figure 8. For example, the staleness of MOVIES Logged NPI is 21 seconds for an index
with 102M elements.

6 Related Work

Considerable work has been done in the area of moving objects. The existing methods
can be classified into two groups: methods with or without time-parameterized (TP)
queries. General design issues for moving object indexes can be found in [30].

6.1 Methods With TP Queries

External Memory. Many approaches are centered around extending external memory
structures like the B+-tree, R-tree[13], or R∗-tree[3]. All of these methods assume that
data would not fit into main memory. Examples include the TR-tree and TB-tree [35],
the TPR-tree [48], the TPR*-tree [42], the STP-tree [41] and the RPPF-tree [34]. The
most relevant work to our work is the Bx-tree [17] as, conceptually, it has some simi-
larities to the MOVIES indexing strategy. The core idea of the Bx-tree is to map three-
dimensional data (two spatial and one temporal dimension) to a one-dimensional space.
This is done by using a recursive space-filling curve and mapping data to a B+-tree very
similarly to [32]. However, in contrast to the latter approach, the Bx-tree also partitions
data into phases corresponding to future time intervals. For each phase it uses a separate
subtree to index moving objects and predicted positions. As a consequence, prediction
queries are supported. As the Bx-tree is based on a B+-tree, it is very easy to integrate
it into existing DBMSs. The Bx-tree was shown to outperform competing methods such
as the TPR-tree [48]. However, in contrast to MOVIES the Bx-tree does not rebuild the
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index based on updates buffers but rather follows an update strategy similar to update-
in-place. Also the partitioning into phases used by the Bx-tree leads to relatively high
query cost (as observed in our experiments) which is avoided by MOVIES. Other meth-
ods index moving objects by transforming them to a higher dimensional space. This in-
cludes STRIPES [33] and [21] which transform d-dimensional space to 2d-dimensional
Hough-X space [15]. The recently proposed Bdual-tree [50] uses the same idea; however
it maps the Hough-X space back to a one-dimensional space using a Hilbert curve. [43]
presents a study on dual methods concluding that if query efficiency is required (as re-
quired in this paper), dual methods are not competitive. Interestingly, in the concluding
remarks of [43] it is suggested that it could be beneficial to rather reconstruct a non-dual
method periodically. Exactly this approach is followed by MOVIES.
Main Memory. The approach of [7] partitions data into sets of active objects that stay
in a main memory buffer and inactive objects that reside on external memory. Therefore
that work is more of a buffering scheme for moving object indexing. It is orthogonal to
the techniques presented here and can be applied on top of any moving objects index.

6.2 Methods Without TP Queries

Main Memory. Relevant to our work are methods that use main memory for moni-
toring queries. The method of [19] uses a fix-sized grid where the grid-size is chosen
w.r.t. the average query window sizes. Each grid cell maintains pointers to two lists with
query results. Query results are periodically reevaluated and query results are delivered
with a time delay ∆t. [51] extends [19] to k-NN queries. [26] improves [51] to only
update grid-cells that are affected by an incoming update. However, none of the former
methods provides any support for time-parameterized queries. Also [19,51,26] do nei-
ther provide any means how to scale for cases when the main memory is exhausted nor
provide any parallelization scheme. In contrast MOVIES provides solutions for all of
these issues. [27] focusses on k-NN in road networks where the distance among objects
is not the euclidean distance but rather the length of the shortest path on the network.
Therefore the latter method will not work for objects not following roads, e.g., planes,
ships, people’s phones. In contrast, MOVIES supports all of these scenarios.

6.3 Extensions for Efficient Updates

External Memory. Frequent update handling in R-trees was treated in [23,4]. A general
survey on how to optimize B-trees for high update rates was recently presented by
Graefe [12]. Several of these optimizations may be traced back to Lars Arge’s buffer
tree [2]. Graefe also mentions differential files [38] as an effective means to trade query
performance for update performance. However, [12] does not mention that one could
trade query result staleness and keep both queries and updates efficient as in MOVIES.
Main Memory. Batching updates in a similar way to Lars Arge’s buffer tree [2] was
also considered for main memory optimized trees such as [52,8] however trading query
for update performance. In contrast, MOVIES does not trade query performance for
update performance. Other cache-efficient trees are the CSS-tree [37] and the FPB+-
tree [6]. An interesting challenge would be to extend both the Bx-tree and MOVIES
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to include these optimizations. However, as pointed out in Section 2.2, the query pro-
cessing performance is not affected by MOVIES. Therefore, the general trade-off of
update-in-place versus collect and rebuild as used by MOVIES will remain unchanged.
Rather, as MOVIES may build read-only indexes at each index frame, MOVIES could
even improve overall query performance by building read-only cache-aware indexes.

6.4 Experimental Studies

Moving object scenarios comprise a large number of objects and a large number of
updates. As mentioned above, the number of cars in Germany is about 58,000,000 [22].
Assume every car sends an update on its position every 2 seconds, then this boils down
to 29,000,000 updates per second. If we were to index not only cars but also planes,
people’s cellular phones, etc., we would face even higher data and update volumes. In
this work we are interested in supporting these large scale scenarios. Therefore we are
considering data sets of up to 100,000,000 moving objects. This is 10 times larger than
in the biggest study available [23] and by at least two orders of magnitude larger than in
all other studies, e.g., [26,27,17,19,51,7]. We think it is important to scale to such large
data sets in order to understand the limits of the different methods.

7 Conclusions

This paper has proposed a novel approach to time-parameterized moving object in-
dexing of massive data sets under very high update rates. Our approach is based on
frequently building short-lived throwaway indexes. This keeps at the same time query
throughput high, query response time low, and update performance high. The price we
have to pay is slightly out-of-date (stale) query results, which is acceptable in several
applications including aircraft control [39]. We have shown that this price can be re-
duced to be as small as a few seconds even for very large data sets of up to 100,000,000
moving objects. Our experiments have demonstrated the feasibility of our approach
even for massive realistic data sets. We have presented results of an experimental study
using the entire road network of Germany: a network size unmatched by any previous
work. In our study we scale up to 100,000,000 moving objects and 58,000,000 updates
per second. MOVIES shows order of magnitude improvements over state-of-the-art ap-
proaches like the Bx-tree, as well as several baseline methods w.r.t. supported update
rates and query rates. One general conclusion is that the popular pattern of keeping and
modifying an index should be dropped for moving object scenarios. Another surprising
conclusion of our study is that the idea of indexing predictions for time-parameterized
queries as done by some external memory indexes does only work well in main memory
for low update rates. In terms of future work we plan to examine the trade-off of scala-
bility and stalenesss in more detail. Another research direction would be to extend our
approach to consider cache-aware B+-trees, e.g. [37]. However, as shown by our formal
analysis, the general trade-off of update-in-place versus collect-and-rebuild would even
be improved in favor of MOVIES.
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