Copyright of all slides: Jens Dittrich and Jorge Quiané 2012

Efficient Big Data Processing in Hadoop MapReduce

Jens Dittrich

Jorge-Arnulfo Quiané-Ruiz

MapReduce Intro	Data Layouts
Job Optimization	Indexing

MapReduce Intro	

http://cdsweb.cern.ch/record/1295244

http://www.flickr.com/photos/ 14924974@N02/2992963984/

all roads of Germany, from MOVIESpaper SSTD 2009

http://www.istockphoto.com/stockillustration-16136234-dna-strands.php

[Dean et al, OSDI'04]

MapReduce

map(key, value) -> set of (ikey, ivalue)

reduce(ikey, set of ivalue) -> (fkey, fvalue)

Google-Use Case:

Web-Index

map(key, value) -> set of (ikey, ivalue) map(docID, document)
->
set of (term, docID)

reduce(ikey, set of ivalue) -> (fkey, fvalue)

reduce(term, set of docID) -> (term, (posting list of docID, count))

Other Applications:

Search

rec.a==42 or: rec.contains(``bla´´) or: rec.contains(0011001)

Search

rec.a==42 or: rec.contains(``bla´´) or: rec.contains(0011001)

Machine Learning

k-means, mahout library

Search

rec.a==42 or: rec.contains(``bla´´) or: rec.contains(0011001)

> Machine Learning k-means, mahout library

Web-Analysis Sum of all accesses to page Y from user X

Search

rec.a==42 or: rec.contains(``bla´´) or: rec.contains(0011001)

> Machine Learning k-means, mahout library

Web-Analysis Sum of all accesses to page Y from user X

etc.

map() and reduce() with Big Data ?

http://www.istockphoto.com/ file_closeup.php?id=591134

http://www.istockphoto.com/ file_closeup.php?id=591134

http://www.istockphoto.com/ file_closeup.php?id=591134

HDFS

HDFS

Failover

1 5	7 6	2	9 5	2	9 8	1	7 6	3	8 9	2	8	 1	7
D	N1	D	N2		N3		N4		N5	D	N6	D	Nn

Failover

Load Balancing

HDFS

	1	7	2	9	2	9	1	7	3	8	2	8	 1	
	5	6	3	5	4	8	5	6	4	9	3	6	4	7
Į	DN	V1	D	N2		N3	DN4		DN5		DN6		D	Nn

MapReduce		
HDFS		

MapReduce	map(docID, document) -> set of (term, docID)
HDFS	

Map Phase

MapReduce	map(docID, document) -> set of (term, docID)
HDFS	

Map Phase

MapReduce	map(docID, document) -> set of (term, docID)
HDFS	

Map Phase

MapReduce	map(docID, document) -> set of (term, docID)

HDFS

Map Phase

MapReduce

map(docID, document) -> set of (term, docID)

HDFS

MapReduce

map(docID, document) -> set of (term, docID)

7

Í	1	7	2	9	2	9	1	7	3	8	2	8	1	
	5	6	3	5	4	8	5	6	4	9	3	6	4	
	6'		9'	5'	8'		1'		3'	4'	2'		7'	
ĺ	D	V1	D	N2	D	N3	D	N4	DI	N5	D	N6	DI	N

MapReduce	group by term
HDFS	

Shuffle Phase 😤

MapReduce	group by term
HDFS	

MapReduce	group by term
HDFS	

MapReduce	group by term
HDFS	

MapReduce	group by term
HDFS	

MapReduce	group by term
HDFS	

Reduce Phase

reduce(term, set of docID) -> set of (term, (posting list of docID, count))

MapReduce		
HDFS		

MapReduce	reduce(term, set of docID) -> set of (term, (posting list of docID, count))
HDFS	

reduce(term, set of docID) -> set of MapReduce (term, (posting list of docID, count)) **HDFS**

MapReduce	reduce(term, set of docID) -> set of (term, (posting list of docID, count))
HDFS	

Failover

Failover

Scalability

Failover

Scalability

schema-later

Hadoop MapReduce Disadvantages

Execution Pipeline

details: see Hadoop++-paper

MapReduce Intro	Data Layouts
Job Optimization	Indexing

Spill Process

Spill Process Overview

Spill Process Overview

Spill Process Overview

Spill Process Overview

Spill Process Overview

But... there are many more parameters!

name	value
hadoop.job.history.location	
hadoop.job.history.user.location	
io.sort.factor	10
io.sort.mb	100
io.sort.record.percent	0.05
io.sort.spill.percent	0.80
io.map.index.skip	0
mapred.job.tracker	local
mapred.job.tracker.http.address	0.0.0.0:50030
mapred.job.tracker.handler.count	10
mapred.task.tracker.report.address	127.0.0.1:0
mapred.local.dir	\${hadoop.tmp.dir}/mapred/local
mapred.system.dir	\${hadoop.tmp.dir}/mapred/system
mapred.temp.dir	\${hadoop.tmp.dir}/mapred/temp
mapred.local.dir.minspacestart	0
mapred.local.dir.minspacekill	0
mapred.tasktracker.expiry.interval	600000
mapred.tasktracker.instrumentation	org.apache.hadoop.mapred.TaskTrackerMetricsInst
mapred.tasktracker.memory_calculator_plugin	

name	value	
hadoop.job.history.location		
hadoop.job.history.user.location		
io.sort.factor	10	
io.sort.mb	100	
io.sort.record.percent	0.05	
io.sort.spill.percent	0.80	
io.map.index.skip	0	
mapred.job.tracker	local	
mapred.job.tracker.http.address	0.0.0.50030	
mapred.job.tracker.handler.count	10	
mapred.task.tracker.report.address	127.0.0.1:0	
mapred.local.dir	{hadoop.tmp.dir}/mapred/local	
mapred.system.dir	\${hadoop.tmp.dir}/mapred/system	
mapred.temp.dir	\${hadoop.tmp.dir}/mapred/temp	
mapred.local.dir.minspacestart	0]
mapred.local.dir.minspacekill	0	
mapred.tasktracker.expiry.interval	600000	Still
mapred.tasktracker.instrumentation	org.apache.hadoop.mapred.TaskTrackerMetricsInst	many more
mapred.tasktracker.memory_calculator_plugin		

Tuning Job Parameters

Starfish

Overall Goal: find out the right parameter settings for arbitrary MapReduce jobs.

[H. Herodotou and S. Babu: Profiling, What-If, and Cost-based Optimization of MapReduce Programs. PVLDB 2011.]

68

68

Tuning Job Parameters

Starfish

Overall Goal: find out the right parameter settings for arbitrary MapReduce jobs. Contribution: Cost-based optimiser based on a what-if engine.

Tuning Job Parameters

Starfish

Automatic Job Optimization

Manimal

Overall Goal: optimise MapReduce jobs by statically analysing their map functions.

[E. Jahani et al.: Automatic Optimization for MapReduce Programs. PVLDB 2011.]

69

69

Automatic Job Optimization

Manimal

Overall Goal: optimise MapReduce jobs by statically analysing their map functions. **Contribution:** static code analysis of MapReduce jobs.

Automatic Job Optimization

Manimal

Overall Goal: optimise MapReduce jobs by statically analysing their map functions. **Contribution:** static code analysis of MapReduce jobs.

[E. Jahani et al.: Automatic Optimization for MapReduce Programs. PVLDB 2011.]

MapReduce Intro	Data Layouts
Job Optimization	Indexing

Default Layout

3

Problem

MapReduce

HDFS

4

4

4

HDFS

HDFS

Data Layouts in MapReduce

Data Layouts in MapReduce

Initial		
Row		
Read Unnecessary columns		

Column Layout

[D. Batory: On Searching Transposed Files. ACM TODS 1979] [G. Copeland, S. Khoshafian: A Decomposition Storage Model. SIGMOD 1985].

Column Layout in MapReduce?

Column-wise File (CFile)

[Y. Lin et al.: Llama: Leveraging Columnar Storage for Scalable Join Processing in the MapReduce Framework. SIGMOD 2011.]

Data Upload

UserVisits Log

[Y. Lin et al.: Llama: Leveraging Columnar Storage for Scalable Join Processing in the MapReduce Framework. SIGMOD 2011.] 80

Data Upload

[Y. Lin et al.: Llama: Leveraging Columnar Storage for Scalable Join Processing in the MapReduce Framework. SIGMOD 2011.] 80

Data Upload

[Y. Lin et al.: Llama: Leveraging Columnar Storage for Scalable Join Processing in the MapReduce Framework. SIGMOD 2011.] 80

Data Upload

[Y. Lin et al.: Llama: Leveraging Columnar Storage for Scalable Join Processing in the MapReduce Framework. SIGMOD 2011.] 80

Data Upload

[Y. Lin et al.: Llama: Leveraging Columnar Storage for Scalable Join Processing in the MapReduce Framework. SIGMOD 2011.] 80

Data Upload

[Y. Lin et al.: Llama: Leveraging Columnar Storage for Scalable Join Processing in the MapReduce Framework. SIGMOD 2011.] ⁸⁰

[Y. Lin et al.: Llama: Leveraging Columnar Storage for Scalable Join Processing in the MapReduce Framework. SIGMOD 2011.]

[Y. Lin et al.: Llama: Leveraging Columnar Storage for Scalable Join Processing in the MapReduce Framework. SIGMOD 2011.] 80

CFile Format

File Header
Row Group 1
Row Group 2
Row Group n
Row Group
Offsets
Indexed Value
(Optional)
File Summary

Compress picture: <u>http://</u> openclipart.org/detail/68671/compressby-buggi

[Y. Lin et al.: Llama: Leveraging Columnar Storage for Scalable Join Processing in the MapReduce Framework. SIGMOD 2011.] 81

CF	'ile Format		
			Version
	File Header		Column Type
	The fielder	·····	Compression Scheme
	Row Group 1		#Values per Row Group
	Row Group 2		
	Row Group n		
	Row Group		
	Offsets		
	Indexed Value		
	(Optional)		
	File Summary		

Compress picture: <u>http://</u> <u>openclipart.org/detail/68671/compress-</u> <u>by-buggi</u>

[Y. Lin et al.: Llama: Leveraging Columnar Storage for Scalable Join Processing in the MapReduce Framework. SIGMOD 2011.] 81

Compress picture: <u>http://</u> <u>openclipart.org/detail/68671/compress-</u> <u>by-buggi</u>

[Y. Lin et al.: Llama: Leveraging Columnar Storage for Scalable Join Processing in the MapReduce Framework. SIGMOD 2011.]

HDFS Blocks for CFile-adRevenue

Column Type: float (4 bytes) #Total Values = 130,000 Row Group = 1,000 values HDFS Block Size = 64MB

Y. Lin et al.: Llama: Leveraging Columnar Storage for Scalable Join Processing in the MapReduce Framework. SIGMOD 2011.] 82

HDFS Blocks for CFile-adRevenue

Column Type: float (4 bytes) #Total Values = 130,000 Row Group = 1,000 values HDFS Block Size = 64MB

HDFS Block 1		
File Header		
Row Group 1		
Row Group 2		
Row Group 66		

Compress picture: <u>http://</u> <u>openclipart.org/detail/68671/compress-</u> <u>by-buggi</u>

HDFS Blocks for CFile-adRevenue

Column Type: float (4 bytes) #Total Values = 130,000 Row Group = 1,000 values HDFS Block Size = 64MB

82

Framework. SIGMOD 2011.]

Y. Lin et al.: Llama: Leveraging Columnar Storage for Scalable Join Processing in the MapReduce 83 Framework. SIGMOD 2011.]

[Y. Lin et al.: Llama: Leveraging Columnar Storage for Scalable Join Processing in the MapReduce Framework. SIGMOD 2011.] 83

Column Layout in MapReduce

SELECT *a1*, *a2*, ...

FROM table30Atts

Column Layout in MapReduce

Column Layout in MapReduce

SELECT *a1, a2, ...* We vary the number of attributes **FROM** table30Atts

[A. Jindal, J. Quiane, J. Dittrich: Trojan Data Layouts: Right Shoes for a Running Elephant. SoCC 2011] 84

Data Layouts in MapReduce

Data Layouts in MapReduce

Initial	2009
Row	CFile
Read Unnecessary columns	
	Tuple Reconstruction
	High network costs

UserVisits Log

125.102.135.45, espn.com, 2011/12/01, 123.35, football 101.132.121.13, cnn.com, 2011/12/02, 365.98, crisis 120.115.124.34, vldb.org, 2011/12/03, 296.02, database ... 102.192.235.245, voici.com, 2011/12/19, 630.30, queen 145.111.145.1, sports.com, 2011/12/20, 365.98, basket 123.95.100.24, abc.com, 2011/12/21, 26.02, politics

[A. Ailamaki et al.: Weaving Relations for Cache Performance. VLDB 2001]

87

Recap

	UserVisits Log				
	125.102.135.45, espn.com, 2011/12/01, 123.35, football				
Row Group <i>I</i>	101.132.121.13, cnn.com, 2011/12/02, 365.98, crisis 120.115.124.34, vldb.org, 2011/12/03, 296.02, database				
	102.192.235.245, voici.com, 2011/12/19, 955.83, people				
Row Group <i>n</i>	145.111.145.1, sports.com, 2011/12/20, 630.30, basket 123.95.100.24, abc.com, 2011/12/21, 26.02, politics				

[A. Ailamaki et al.: Weaving Relations for Cache Performance. VLDB 2001]

Recap

	UserVisits Log				
Row Group 1	125.102.135.45, espn.com, 2011/12/01, 123.35, football 101.132.121.13, cnn.com, 2011/12/02, 365.98, crisis				
Row Group I	120.115.124.34, vldb.org, 2011/12/03, 296.02, database				
÷					
Row Group <i>n</i>	102.192.235.245, voici.com,2011/12/19, 955.83, people145.111.145.1,sports.com,2011/12/20, 630.30, basket123.95.100.24,abc.com,2011/12/21, 26.02, politics				

Size of a Row Group = Disk Block Size (but can be any arbitrary size)

Recap

UserVisits Log						
	125.102.135.45,	espn.com,	2011/12/01,	123.35,	football	
Row Group 1	101.132.121.13,	cnn.com,	2011/12/02,	365.98,	crisis	
	120.115.124.34,	vldb.org,	2011/12/03,	296.02,	database	
	102.192.235.245	, voici.com	i, 2011/12/19	955.83,	people	
Row Group n	145.111.145.1,	sports.com	n, 2011/12/20), 630.30,	basket	
	123.95.100.24,	abc.com,	2011/12/2	1, 26.02,	politics	

Size of a Row Group = Disk Block Size (but can be any arbitrary size)

[A. Ailamaki et al.: Weaving Relations for Cache Performance. VLDB 2001]

87

PAX in MapReduce?

Storage in Cheetah

[S. Chen: A High Performance, Custom Data Warehouse on Top of MapReduce. PVLDB 2010]

Data Upload

Data Upload

90

HDFS Block Format

Average Record Size: 100 bytes #Total Records = 1,000,000 Row Group Size = 200,000 records HDFS Block Size = 64MB

[S. Chen: A High Performance, Custom Data Warehouse on Top of MapReduce. PVLDB 2010] 91

HDFS Block Format

Average Record Size: 100 bytes #Total Records = 1,000,000 Row Group Size = 200,000 records HDFS Block Size = 64MB

HDFS Block 1

Row Group 1
Row Group 2
Row Group 3
Row Group 4

[S. Chen: A High Performance, Custom Data Warehouse on Top of MapReduce. PVLDB 2010] 91

HDFS Block Format

Average Record Size: 100 bytes #Total Records = 1,000,000 Row Group Size = 200,000 records HDFS Block Size = 64MB

		Version
HDFS Block 1		# Rows
Row Group 1		Pointers
	•	sourceIp
Row Group 2	******	•••
Row Group 3	******	searchWord
Row Group 4		

HDFS Block Format

Average Record Size: 100 bytes #Total Records = 1,000,000 Row Group Size = 200,000 records HDFS Block Size = 64MB

UDEC D11- 1		Version
HDFS Block I	1	# Rows
Row Group 1		Pointers
	·	sourceIp
Row Group 2		
Row Group 3	******	searchWord
Row Group 4		

+ Columns in Row Groups are compressed

[S. Chen: A High Performance, Custom Data Warehouse on Top of MapReduce. PVLDB 2010] 91

HDFS Block Format

Average Record Size: 100 bytes #Total Records = 1,000,000 Row Group Size = 200,000 records HDFS Block Size = 64MB

+ Columns in Row Groups are compressed

+ Further compression at the HDFS block level

[S. Chen: A High Performance, Custom Data Warehouse on Top of MapReduce. PVLDB 2010] 91

MapReduce

[S. Chen: A High Performance, Custom Data Warehouse on Top of MapReduce. PVLDB 2010]

[S. Chen: A High Performance, Custom Data Warehouse on Top of MapReduce. PVLDB 2010] 92

Data Layouts in MapReduce

Initial	2009
Row	CFile
Read Unnecessary columns	
	Tuple Reconstruction
	High network costs

Data Layouts in MapReduce

Initial	2009	2010
Row	CFile	Cheetah
Read Unnecessary columns		
	Tuple Reconstruction	Tuple Reconstruction
	High network costs	
		Block level compression
		Poor I/O Saving

Row Columnar File (RCFile)

[Y. He et al.: RCFile: A Fast and Space-Efficient Data Placement Structure in MapReduce in MapReduce-based Warehouse Systems. ICDE 2011]

96

[Y. He et al.: RCFile: A Fast and Space-Efficient Data Placement Structure in MapReduce in MapReduce-based Warehouse Systems. ICDE 2011]

96

MapReduce-based Warehouse Systems. ICDE 2011]

MapReduce-based Warehouse Systems. ICDE 2011]

[Y. He et al.: RCFIIE: A Fast and Space-Efficient Data Placement Structure in Mapk MapReduce-based Warehouse Systems. ICDE 2011]

Data Layouts in MapReduce

Initial	2009	2010
Row	CFile	Cheetah
Read Unnecessary columns		
	Tuple Reconstruction	Tuple Reconstruction
	High network costs	
		Block level compression
		Poor I/O Saving

Data Layouts in MapReduce

Initial	2009	2010	2011
Row	CFile	Cheetah	RCFile
Read Unnecessary columns	ad Unnecessary columns		
	Tuple Reconstruction	Tuple Reconstruction	Tuple Reconstruction
	High network costs		
		Block level compression	
		Poor I/O Saving	Poor I/O Saving

Column Input Format (CIF)

[A. Floratou et al.: Column-Oriented Storage Techniques for MapReduce. PVLDB 2011]

Remarks on Cheetah-Storage and RCFile

Remarks on Cheetah-Storage and RCFile

(1) I/O elimination becomes difficult

[A. Floratou et al.: Column-Oriented Storage Techniques for MapReduce. PVLDB 2011]

99

99

99

Remarks on Cheetah-Storage and RCFile

- (1) I/O elimination becomes difficult
- (2) Tuning the row-group size becomes critical

[A. Floratou et al.: Column-Oriented Storage Techniques for MapReduce. PVLDB 2011]

Remarks on Cheetah-Storage and RCFile

- (1) I/O elimination becomes difficult
- (2) Tuning the row-group size becomes critical
- (3) Overhead for per-Row Group metadata

Remarks on Cheetah-Storage and RCFile

- (1) I/O elimination becomes difficult
- (2) Tuning the row-group size becomes critical
- (3) Overhead for per-Row Group metadata

CIF Approach:

<u>CFile + Cheetah Storage (or RCFile)</u>

[A. Floratou et al.: Column-Oriented Storage Techniques for MapReduce. PVLDB 2011]

Data Upload ---- Upload UserVisits ----

[A. Floratou et al.: Column-Oriented Storage Techniques for MapReduce. PVLDB 2011]

100

100

Data Upload --- Upload UserVisits ---

[A. Floratou et al.: Column-Oriented Storage Techniques for MapReduce. PVLDB 2011]

Data U	pload Run Parallel Loader _H	IDFS
Dataset up hdfs://MyD	Data/UserVisits/	
	125.102.135.45, espn.com, 2011/12/01, 123.35, football	
	101.132.121.13, cnn.com, 2011/12/02, 365.98, crisis	
	120.115.124.34, vldb.org, 2011/12/03, 296.02, database	
	•	

[A. Floratou et al.: Column-Oriented Storage Techniques for MapReduce. PVLDB 2011]

Data Upload Run Parallel Loader H					IDFS	
Dataset uploaded at hdfs://MyData/UserVisits/						
	t				DAV	
	125.102.135.45	espn.com	2011/12/01	123.35	football	
	101.132.121.13	cnn.com	2011/12/02	365.98	crisis	
Row Group	120.115.124.34	vldb.org	2011/12/03	296.02	database	
"split0"	•	•	•	•	•	
	•	:			:	

[A. Floratou et al.: Column-Oriented Storage Techniques for MapReduce. PVLDB 2011]

101

[A. Floratou et al.: Column-Oriented Storage Techniques for MapReduce. PVLDB 2011]

PAX Layout in MapReduce

SELECT *a1*, *a2*, ... **FROM** table30Atts

• Column Layout • Row Layout 5 4 Data Access Cost [s] 3 2 1 0 5 30 10 15 20 25 Number of Referenced Attributes (out of 30)

[A. Jindal, J. Quiane, J. Dittrich: Trojan Data Layouts: Right Shoes for a Running Elephant. SoCC 2011]

PAX Layout in MapReduce

SELECT *a1*, *a2*, ... FROM table30Atts Row Layout Column Layout PAX Layout 5 4 Data Access Cost [s] 3 2 1 0 5 10 15 20 25 30 Number of Referenced Attributes (out of 30)

[A. Jindal, J. Quiane, J. Dittrich: Trojan Data Layouts: Right Shoes for a Running Elephant. SoCC 2011]

104

105

Far from Optimal Layout

SELECT *a1*, *a2*, ...

FROM table30Atts

Far from Optimal Layout

SELECT *a1*, *a2*, ...

FROM table30Atts

[A. Jindal, J. Quiane, J. Dittrich: Trojan Data Layouts: Right Shoes for a Running Elephant. SoCC 2011]

Data Layouts in MapReduce

Initial	2009	2010	2011
Row	CFile	Cheetah	RCFile
Read Unnecessary columns			
	Tuple Reconstruction	Tuple Reconstruction	Tuple Reconstruction
	High network costs		
		Block level compression	
		Poor I/O Saving	Poor I/O Saving

Data Layouts in MapReduce

Initial	2009	2010	2011	2011
Row	CFile	Cheetah	RCFile	CIF
Read Unnecessary columns				
	Tuple Reconstruction	Tuple Reconstruction	Tuple Reconstruction	Tuple Reconstruction
	High network costs			
		Block level compression		
		Poor I/O Saving	Poor I/O Saving	

Trojan Data Layouts

[A. Jindal, J. Quiané, J. Dittrich: Trojan Data Layouts: Right Shoes for a Running Elephant. SoCC 2011]

[A. Jindal, J. Quiane, J. Dittrich: Trojan Data Layouts: Right Shoes for a Running Elephant. SoCC 2011]

108

108

[A. Jindal, J. Quiane, J. Dittrich: Trojan Data Layouts: Right Shoes for a Running Elephant. SoCC 2011]

[A. Jindal, J. Quiane, J. Dittrich: Trojan Data Layouts: Right Shoes for a Running Elephant. SoCC 2011]

108

Single HDFS Block Replica Columns picture: <u>http://</u> <u>www.istockphoto.com/stock-</u> <u>photo-10676885-pile-of-words.php</u> Filter picture: <u>http://</u> <u>www.istockphoto.com/stock-</u> <u>photo-8235648-kitchen-funnel.php</u> Packing picture: <u>http://</u> <u>www.istockphoto.com/stock-</u> <u>photo-1373749-c-clamp.php</u>

109

Single HDFS Block Replica

Columns picture: <u>http://</u> www.istockphoto.com/stockphoto-10676885-pile-of-words.php Filter picture: <u>http://</u> www.istockphoto.com/stockphoto-8235648-kitchen-funnel.php Packing picture: <u>http://</u> www.istockphoto.com/stockphoto-1373749-c-clamp.php

[A. Jindal, J. Quiane, J. Dittrich: Trojan Data Layouts: Right Shoes for a Running Elephant. SoCC 2011]

Single HDFS Block Replica

Columns picture: <u>http://</u> www.istockphoto.com/stockphoto-10676885-pile-of-words.php Filter picture: <u>http://</u> www.istockphoto.com/stockphoto-8235648-kitchen-funnel.php Packing picture: <u>http://</u> www.istockphoto.com/stockphoto-1373749-c-clamp.php

109

109

109

[A. Jindal, J. Quiane, J. Dittrich: Trojan Data Layouts: Right Shoes for a Running Elephant. SoCC 2011]

Columns picture: <u>http://</u> <u>www.istockphoto.com/stock-</u> <u>photo-10676885-pile-of-words.php</u> Filter picture: <u>http://</u> <u>www.istockphoto.com/stock-</u> <u>photo-8235648-kitchen-funnel.php</u> Packing picture: <u>http://</u> <u>www.istockphoto.com/stock-</u> <u>photo-1373749-c-clamp.php</u>

Columns picture: <u>http://</u> <u>www.istockphoto.com/stock-</u> <u>photo-10676885-pile-of-words.php</u> Filter picture: <u>http://</u> <u>www.istockphoto.com/stock-</u> <u>photo-8235648-kitchen-funnel.php</u> Packing picture: <u>http://</u> <u>www.istockphoto.com/stock-</u> <u>photo-1373749-c-clamp.php</u>

[A. Jindal, J. Quiane, J. Dittrich: Trojan Data Layouts: Right Shoes for a Running Elephant. SoCC 2011] 109

Columns picture: <u>http://</u> <u>www.istockphoto.com/stock-</u> <u>photo-10676885-pile-of-words.php</u> Filter picture: <u>http://</u> <u>www.istockphoto.com/stock-</u> <u>photo-8235648-kitchen-funnel.php</u> Packing picture: <u>http://</u> <u>www.istockphoto.com/stock-</u> <u>photo-1373749-c-clamp.php</u>

Columns picture: <u>http://</u> <u>www.istockphoto.com/stock-</u> <u>photo-10676885-pile-of-words.php</u> Filter picture: <u>http://</u> <u>www.istockphoto.com/stock-</u> <u>photo-8235648-kitchen-funnel.php</u> Packing picture: <u>http://</u> <u>www.istockphoto.com/stock-</u> <u>photo-1373749-c-clamp.php</u>

109

109

Columns picture: <u>http://</u> www.istockphoto.com/stockphoto-10676885-pile-of-words.php Filter picture: <u>http://</u> www.istockphoto.com/stockphoto-8235648-kitchen-funnel.php Packing picture: <u>http://</u> www.istockphoto.com/stockphoto-1373749-c-clamp.php

Queries picture: <u>http://</u> <u>www.istockphoto.com/stock-</u> <u>photo-14278066-colorful-balls-with-</u> <u>question-marks.php</u>

[A. Jindal, J. Quiane, J. Dittrich: Trojan Data Layouts: Right Shoes for a Running Elephant. SoCC 2011]

Multiple HDFS Block Replica

Multiple HDFS

Block Replica

Queries picture: <u>http://</u> <u>www.istockphoto.com/stock-</u> <u>photo-14278066-colorful-balls-with-</u> <u>question-marks.php</u>

Multiple HDFS Block Replica

Queries picture: <u>http://</u> www.istockphoto.com/stockphoto-14278066-colorful-balls-withquestion-marks.php

[A. Jindal, J. Quiane, J. Dittrich: Trojan Data Layouts: Right Shoes for a Running Elephant. SoCC 2011]

Queries picture: <u>http://</u> <u>www.istockphoto.com/stock-</u> <u>photo-14278066-colorful-balls-with-</u> <u>question-marks.php</u>

Trojan Data Layouts Results

[A. Jinda	I, J. Quiane, J. Dittrich: Trojan Data Layouts:	Right Shoes for a Running Elephant.	1
	SoCC 2011]		
Ō	over Hadoop-Row	over Hadoop-PAX	

Data Layouts in MapReduce

Initial	2009	2010	2011	2011	2011
Row	CFile	Cheetah	RCFile	CIF	Trojan
Read Unnecessary columns					
	Tuple Reconstruction	Tuple Reconstruction	Tuple Reconstruction	Tuple Reconstruction	Tuple Reconstruction
	High network costs				
		Block level compression			
		Poor I/O Saving	Poor I/O Saving		

Data Layouts in MapReduce

Initial	2009	2010	2011	2011	2011
Row	CFile	Cheetah	RCFile	CIF	Trojan
Read Unnecessary columns					
	Tuple Reconstruction	Tuple Reconstruction	Tuple Reconstruction	Tuple Reconstruction	Tuple Reconstruction
	High network costs				
		Block level compression			
		Poor I/O Saving	Poor I/O Saving		
Single Layout	Single Layout	Single Layout	Single Layout	Single Layout	

Data Layouts in MapReduce

Initial	2009	2010	2011	2011	2011
Row	CFile	Cheetah	RCFile	CIF	Trojan
Read Unnecessary columns					
	Tuple Reconstruction	Tuple Reconstruction	Tuple Reconstruction	Tuple Reconstruction	Tuple Reconstruction
	High network costs				
		Block level compression			
		Poor I/O Saving	Poor I/O Saving		
Single Layout	Single Layout	Single Layout	Single Layout	Single Layout	

Which Layout to Use?

Well...

... it depends on your query workload

Lessons Learned

	Low Record Selectivity	
Low Attribute Selectivity		

117

Lessons Learned

	Low Record Selectivity	
Low Attribute Selectivity	Row	

	Low Record Selectivity	
Low Attribute Selectivity	Row	
Medium Attribute Selectivity		

Lessons Learned

	Low Record Selectivity	
Low Attribute Selectivity	Row	
Medium Attribute Selectivity	Column Groups	

117

Lessons Learned

	Low Record Selectivity	
Low Attribute Selectivity	Row	
Medium Attribute Selectivity	Column Groups	
High Attribute Selectivity		

	Low Record Selectivity	
Low Attribute Selectivity	Row	
Medium Attribute Selectivity	Column Groups	
High Attribute Selectivity	PAX	

Lessons Learned

	Low Record Selectivity	High Record Selectivity
Low Attribute Selectivity	Row	
Medium Attribute Selectivity	Column Groups	
High Attribute Selectivity	PAX	

117

Lessons Learned

	Low Record Selectivity	High Record Selectivity
Low Attribute Selectivity	Row	Row Groups
Medium Attribute Selectivity	Column Groups	
High Attribute Selectivity	PAX	

	Low Record Selectivity	High Record Selectivity
Low Attribute Selectivity	Row	Row Groups
Medium Attribute Selectivity	Column Groups	Row Groups + Column Groups
High Attribute Selectivity	PAX	

Lessons Learned

	Low Record Selectivity	High Record Selectivity
Low Attribute Selectivity	Row	Row Groups
Medium Attribute Selectivity	Column Groups	Row Groups + Column Groups
High Attribute Selectivity	PAX	Row Groups + PAX

117

MapReduce Intro	Data Layouts
Job Optimization	Indexing

DBMS as Data Storage (HadoopDB)

[A. Abouzeid et al.: HadoopDB: An Architectural Hybrid of MapReduce and DBMS Technologies for Analytical Workloads. PVLDB 2009]

Index Creation

		fo	r Analytical Wo	rkloads PVI DR	20091	8	121
ΓA.	Abouzeid	et al.: HadoopDF	B: An Architect	iral Hybrid of Ma	pReduce and DI	BMS Technologies	
	I	Node 1		Node m		Node n	
	HDFS	DataNode 1		DataNode m		DataNode n	
		Local DBMS 1		Local DBMS m		Local DBMS n	
	Reduce						

[A. Abouzeid et al.: HadoopDB: An Architectural Hybrid of MapReduce and DBMS Technologies for Analytical Workloads. PVLDB 2009]

[A. Abouzeid et al.: HadoopDB: An Architectural Hybrid of MapReduce and DBMS Technologies for Analytical Workloads. PVLDB 2009]

[A. Abouzeid et al.: HadoopDB: An Architectural Hybrid of MapReduce and DBMS Technologies for Analytical Workloads. PVLDB 2009]

[A. Abouzeid et al.: HadoopDB: An Architectural Hybrid of MapReduce and DBMS Technologies for Analytical Workloads. PVLDB 2009] 122

HadoopDB Results (Selection Task)

Rankings Dataset	
pageURL	
pageRank	
avgDuration	

HadoopDB Results (Selection Task)

Rankings Dataset	
pageURL	
pageRank	
avgDuration	

Query

SELECT pageURL, pageRank FROM Rankings WHERE pageRank > 10

[A. Abouzeid et al.: HadoopDB: An Architectural Hybrid of MapReduce and DBMS Technologies for Analytical Workloads. PVLDB 2009] [23

HadoopDB Results (Selection Task)

[A. Abouzeid et al.: HadoopDB: An Architectural Hybrid of MapReduce and DBMS Technologies for Analytical Workloads. PVLDB 2009] [23

Indexing in MapReduce

Indexing in MapReduce

But... inside MapReduce?

Indexing Levels

Indexing Levels

• File Level: filters HDFS Blocks

Indexing Levels

• File Level: filters HDFS Blocks

126

126

File-Level Indexing (Blocks Directory)

[D. Jiang et al.: The Performance of MapReduce: An In-Depth Study. PVLDB 2010]

128

[D. Jiang et al.: The Performance of MapReduce: An In-Depth Study. PVLDB 2010]

Job Execution

Job Execution

File-Level Indexing Results (Selection Task)

[D. Jiang et al.: The Performance of MapReduce: An In-Depth Study. PVLDB 2010]

Indexing in MapReduce

Indexing in MapReduce

2009	2010
HadoopDB	File Level
Still a database	
	Global Sorting

Full-Text Indexing

[J. Lin et al.: Full-Text Indexing for Optimizing Selection Operations in Large-Scale Data Analytics. MapReduce Workshop 2011]

Index Creation

Tweets Dataset

"Mexico won the gold medal in soccer" "Hadoop summit was awesome!" "Hello from the other side of the world"

"Visiting Istanbul today!"

"Come in numbers to the HAIL talk!"

"I released our Hadoop-based system today"

[J. Lin et al.: Full-Text Indexing for Optimizing Selection Operations in Large-Scale Data Analytics. MapReduce Workshop 2011]

Index Creation

Tweets Dataset

	"Mexico won the gold medal in soccer"
Row Group 1	"Hadoop summit was awesome!"
	"Hello from the other side of the world"
	•
	•
	•
	"Visiting Istanbul today!"
Row Group <i>n</i>	"Come in numbers to the HAIL talk!"
1	"I released our Hadoop-based system today"

Index Creation

Tweets Dataset

Row Group 1	"Mexico won the gold medal in soccer" "Hadoop summit was awesome!" "Hello from the other side of the world"
Row Group <i>n</i>	"Visiting Istanbul today!" "Come in numbers to the HAIL talk!" "I released our Hadoop-based system today"

[J. Lin et al.: Full-Text Indexing for Optimizing Selection Operations in Large-Scale Data Analytics. MapReduce Workshop 2011]

Index Creation

Tweets Dataset

	"Mexico won the gold medal in soccer"
Row Group 1	"Hadoop summit was awesome!"
	"Hello from the other side of the world"
	: :
	"Visiting Istanbul today!"
Row Group n	"Come in numbers to the HAIL talk!"
-	"I released our Hadoop-based system today"
	Indexing Procedure
	×

[J. Lin et al.: Full-Text Indexing for Optimizing Selection Operations in Large-Scale Data Analytics. MapReduce Workshop 2011]

Index Creation

Tweets Dataset "Mexico won the gold medal in soccer" "Hadoop summit was awesome!" Row Group 1 "Hello from the other side of the world" "Visiting Istanbul today!" "Come in numbers to the HAIL talk!" Row Group n "I released our Hadoop-based system today" _____ Indexing Procedure (1) for each Row Group [J. Lin et al.: Full-Text Indexing for Optimizing Selection Operations in Large-Scale Data Analytics.

MapReduce Workshop 2011]

Index Creation

Tweets Dataset Row Group 1 "Mexico won the gold medal in soccer" "Hadoop summit was awesome!" "Hello from the other side of the world" "Wisting Istanbul today!" "Come in numbers to the HAIL talk!" "I released our Hadoop-based system today" Indexing Procedure (1) for each Row Group (2) create pseudo-document

[J. Lin et al.: Full-Text Indexing for Optimizing Selection Operations in Large-Scale Data Analytics. MapReduce Workshop 2011]

Index Creation

Tweets Dataset

Pow Group 1	"Mexico won the gold medal in soccer"
Kow Oloup I	
	"Hello from the other side of the world"
	• • • • • • • • • • • • • • • • • • •
	•
	•
	"Visiting Istanbul today!"
Row Group <i>n</i>	"Come in numbers to the HAIL talk!"
Row Group n	"I ralassed our Hadoon based system today"
	Thereased our fradoop-based system today
	Indexing Procedure
	indexing i foccuare
	(1) for each Pow Group
	(1) Ioi each Kow Oloup
	(2) create <i>pseudo-document</i>
	(3) index the pseudo-document in Lucene
	(5) maex the pseudo-document in Edecine
	S
[L Lin et al.: Full-]	Fext Indexing for Optimizing Selection Operations in Large-Scale Data Analyti

133

MapReduce Workshop 2011]

Job Execution

Full-Text Indexing Results

Setup Tweets Dataset: 69.2 million tweets Dataset Size: 6.07GB #Row Groups: 39,767 Avg #Records per Row Group: 1,740

[J. Lin et al.: Full-Text Indexing for Optimizing Selection Operations in Large-Scale Data Analytics. MapReduce Workshop 2011]

Full-Text Indexing Results

Setup

- J..... Tweets Dataset: 69.2 million tweets
- Dataset Size: 6.07GB
- #Row Groups: 39,767
- Avg #Records per Row Group: 1,740

	Query	Row Groups	Records	Selectivity
1	hadoop	97	105	1.517×10^{-6}
2	replication	140	151	2.182×10^{-6}
3	buffer	500	559	8.076×10^{-6}
4	transactions	819	867	1.253×10^{-5}
5	parallel	999	1159	1.674×10^{-5}
6	ibm	1437	1569	2.267×10^{-5}
$\overline{7}$	mysql	1511	1664	2.404×10^{-5}
8	oracle	1822	1911	2.761×10^{-5}
9	database	3759	3981	5.752×10^{-5}
10	microsoft	13089	17408	2.515×10^{-4}
11	data	20087	30145	4.355×10^{-4}

[J. Lin et al.: Full-Text Indexing for Optimizing Selection Operations in Large-Scale Data Analytics. MapReduce Workshop 2011] 135

Full-Text Indexing Results

Setup	D	(0.0. 11)			
Tweets Dataset: 69.2 million tweets			Hi	while selective queries	
#Pow (Groups: 3	0.767		111	giny selective queries
Ava #D	Dioups. D	9,707 or Pow Group: 1	740		
Avg #K	cecolus p	er Kow Group: T	,740		
		Query	Row Groups	Records	Selectivity
	1	hadoop	97	105	1.517×10^{-6}
	2	replication	140	151	2.182×10^{-6}
	3	buffer	500	559	8.076×10^{-6}
	4	transactions	819	867	1.253×10^{-5}
	5	parallel	999	1159	1.674×10^{-5}
	6	ibm	1437	1569	2.267×10^{-5}
	7	mysql	1511	1664	2.404×10^{-5}
	8	oracle	1822	1911	2.761×10^{-5}
	9	database	3759	3981	5.752×10^{-5}
	10	microsoft	13089	17408	2.515×10^{-4}
	11	data	20087	30145	4.355×10^{-4}

[J. Lin et al.: Full-Text Indexing for Optimizing Selection Operations in Large-Scale Data Analytics. 135 MapReduce Workshop 2011]

Full-Text Indexing Results

Setup

...... Tweets Dataset: 69.2 million tweets

Dataset Size: 6.07GB

#Row Groups: 39,767

Avg #Rec

	0	Pow Crouns D		Sala atiaita
	Query	Now Groups F	ecords/	Selectivity
L	hadoop	(97)	(105)	1.517×10^{-6}
2	replication	140	151	2.182×10^{-6}
3	buffer	500	559	8.076×10^{-6}
1	transactions	819	867	1.253×10^{-5}
5	parallel	999	1159	1.674×10^{-5}
3	ibm	1437	1569	2.267×10^{-5}
7	mysql	1511	1664	2.404×10^{-5}
3	oracle	1822	1911	2.761×10^{-5}
)	database	3759	3981	5.752×10^{-5}
	microsoft	13089	17408	2.515×10^{-4}
	data	20087	30145	4.355×10^{-4}

168,675 additional records

[J. Lin et al.: Full-Text Indexing for Optimizing Selection Operations in Large-Scale Data Analytics. MapReduce Workshop 2011]

Full-Text Indexing Results

Setu Twe Data #Ro Avg	ets Data aset Size w Grou #Recor	aset: 6 e: 6.07 ps: 39 rds per	9.2 million twe GB ,767 Row Group: 1	ets ,740	<mark>>30%</mark>	of Row Groups a	re read!
			Query	Row Groups	Records	Selectivity	
		1	hadoop	97	105	1.517×10^{-6}	
		2	replication	140	151	2.182×10^{-6}	
		3	buffer	500	5 5 9	8.076×10^{-6}	
		4	transactions	819	/867	1.253×10^{-5}	
		5	parallel	999	/1159	1.674×10^{-5}	
		6	ibm	1437	/ 1569	2.267×10^{-5}	
		$\overline{7}$	mysql	1511	/ 1664	2.404×10^{-5}	
		8	oracle	1822 /	1911	2.761×10^{-5}	
		9	database	3759	3981	5.752×10^{-5}	
		10	microsoft	13089	17408	2.515×10^{-4}	
		11	data	20087	30145	4.355×10^{-4}	

[J. Lin et al.: Full-Text Indexing for Optimizing Selection Operations in Large-Scale Data Analytics. MapReduce Workshop 2011] 135

Full-Text Indexing Results

[J. Lin et al.: Full-Text Indexing for Optimizing Selection Operations in Large-Scale Data Analytics. MapReduce Workshop 2011]

Indexing in MapReduce

2009	2010
HadoopDB	File Level
Still a database	
	Global Sorting

Indexing in MapReduce

2009	2010	2011
HadoopDB	File Level	Full Text
Still a database		
	Global Sorting	
		Only for high selectivity

[J. Dittrich, J. Quiané, A. Jindal, Y. Kargin, V. Setty, J. Schad: Hadoop++: Making a Yellow Elephant Run Like a Cheetah (Without It Even Noticing). PVLDB 2010]

Job Execution

MapReduce

[J. Dittrich, J. Quiané, A. Jindal, Y. Kargin, V. Setty, J. Schad: Hadoop++: Making a Yellow Elephant Run Like a Cheetah (Without It Even Noticing). PVLDB 2010]

[J. Dittrich, J. Quiané, A. Jindal, Y. Kargin, V. Setty, J. Schad: Hadoop++: Making a Yellow Elephant Run Like a Cheetah (Without It Even Noticing). PVLDB 2010]

[J. Dittrich, J. Quiané, A. Jindal, Y. Kargin, V. Setty, J. Schad: Hadoop++: Making a Yellow Elephant Run Like a Cheetah (Without It Even Noticing). PVLDB 2010]

Job Execution

Job Execution

Job Execution

HDFS

Job Execution

Job Execution

Job Execution

HDFS

Block-Level Indexing Results (Selection Task)

[J. Dittrich, J. Quiané, A. Jindal, Y. Kargin, V. Setty, J. Schad: Hadoop++: Making a Yellow Elephant Run Like a Cheetah (Without It Even Noticing). PVLDB 2010]

Indexing in MapReduce

2009	2010	2011
HadoopDB	File Level	Full Text
Still a database		
	Global Sorting	
		Only for high selectivity

Indexing in MapReduce

2009	2010	2011	2010
HadoopDB	File Level	Full Text	Trojan
Still a database			
	Global Sorting		
		Only for high selectivity	

Can We Exploit them All Together?

Putting All Together

Putting All Together

Still, Long index creation times

Still, Long index creation times & One clustered index per dataset

Hadoop Aggressive Indexing Library (HAIL)

[J. Dittrich, J. Quiané, S. Richter, S. Schuh, A. Jindal, J. Schad: Only Aggressive Elephants are Fast Elephants. PVLDB 2012]

Inspired by Trojan Data Layouts¹

¹[A. Jindal, J. Quiané, J. Dittrich: Trojan Data Layouts: Right Shoes for a Running Elephant. SoCC 2011]

Indexing in MapReduce

2009	2010	2011	2010	2012
HadoopDB	File Level	Full Text	Trojan	HAIL
Still a database				
	Global Sorting			
		Only for high selectivity		

Indexing in MapReduce

2009	2010	2011	2010	2012
HadoopDB	File Level	Full Text	Trojan	HAIL
Still a database				
	Global Sorting			
		Only for high selectivity		
High upload time	High upload time	High upload time	High upload time	
Single Index	Single Index	Single Index	Single Index	

Indexing in MapReduce

2009	2010	2011	2010	2012
HadoopDB	File Level	Full Text	Trojan	HAIL
Still a database				
	Global Sorting			
		Only for high selectivity		
High upload time	High upload time	High upload time	High upload time	
Single Index	Single Index	Single Index	Single Index	

TALK:

Only Aggressive Elephants are Fast Elephants Wednesday August 29th 11:30 a.m. at the Convention Lower Hall 2 (*Research Session 13: MapReduce II*)

TALK: Only Aggressive Elephants are Fast Elephants Wednesday August 29th 11:30 a.m. at the Convention Lower Hall 2 (*Research Session 13: MapReduce II*)

Invisible Index Creation Times: up to 7.3 times faster than Hadoop++

[J. Dittrich, J. Quiané, S. Richter, S. Schuh, A. Jindal, J. Schad: Only Aggressive Elephants are Fast Elephants. PVLDB 2012]

TALK: Only Aggressive Elephants are Fast Elephants

Wednesday August 29th 11:30 a.m. at the Convention Lower Hall 2 (Research Session 13: MapReduce II)

Invisible Index Creation Times:

up to 7.3 times faster than Hadoop++

Fast Data Upload:

up to 1.6 times faster than Hadoop

[J. Dittrich, J. Quiané, S. Richter, S. Schuh, A. Jindal, J. Schad: Only Aggressive Elephants are Fast Elephants. PVLDB 2012]

TALK: Only Aggressive Elephants are Fast Elephants Wednesday August 29th 11:30 a.m. at the Convention Lower Hall 2 (*Research Session 13: MapReduce II*)

Invisible Index Creation Times:

up to 7.3 times faster than Hadoop++

Fast Data Upload:

up to 1.6 times faster than Hadoop

Fast Job Runtimes:

up to ~70 times faster than Hadoop and Hadoop++

MapReduce Intro	Data Layouts
Job Optimization	Indexing

Copyright of all slides: Jens Dittrich and Jorge Quiané 2012

Efficient Big Data Processing in Hadoop MapReduce

Jens Dittrich

Jorge-Arnulfo Quiané-Ruiz

