
RAFTing MapReduce: Fast Recovery on the Raft
Jorge-Arnulfo Quiané-Ruiz, Christoph Pinkel, Jörg Schad, and Jens Dittrich

Information Systems Group, Saarland University
http://infosys.cs.uni-saarland.de

Abstract—MapReduce is a computing paradigm that has
gained a lot of popularity as it allows non-expert users to easily
run complex analytical tasks at very large-scale. At such scale,
task and node failures are no longer an exception but rather a
characteristic of large-scale systems. This makes fault-tolerance
a critical issue for the efficient operation of any application.
MapReduce automatically reschedules failed tasks to available
nodes, which in turn recompute such tasks from scratch. How-
ever, this policy can significantly decrease performance of appli-
cations. In this paper, we propose a family of Recovery Algorithms
for Fast-Tracking (RAFT) MapReduce. As ease-of-use is a major
feature of MapReduce, RAFT focuses on simplicity and also
non-intrusiveness, in order to be implementation-independent.
To efficiently recover from task failures, RAFT exploits the fact
that MapReduce produces and persists intermediate results at
several points in time. RAFT piggy-backs checkpoints on the
task progress computation. To deal with multiple node failures,
we propose query metadata checkpointing. We keep track of the
mapping between input key-value pairs and intermediate data
for all reduce tasks. Thereby, RAFT does not need to re-execute
completed map tasks entirely. Instead RAFT only recomputes
intermediate data that were processed for local reduce tasks
and hence not shipped to another node for processing. We
also introduce a scheduling strategy taking full advantage of
these recovery algorithms. We implemented RAFT on top of
Hadoop and evaluated it on a 45-node cluster using three common
analytical tasks. Overall, our experimental results demonstrate
that RAFT outperforms Hadoop runtimes by 23% on average
under task and node failures. The results also show that RAFT
has negligible runtime overhead.

I. INTRODUCTION

Data-intensive applications process vast amounts of data
with special-purpose programs. Even though the computations
behind these applications are conceptually simple — e.g., the
ever-popular inverted index application — the size of input
datasets requires them to be run over thousands of computing
nodes. For this, Google initially developed the MapReduce
framework [1], but now many companies, such as Facebook,
Twitter, and Yahoo!, use MapReduce applications for a variety
of tasks. A salient feature of MapReduce is that users do not
need to worry about issues such as parallelization and failover.

Fault-tolerance is an important aspect in large clusters
because the probability of node failures increases with the
growing number of computing nodes. This is confirmed by a
9-year study of node failures in large computing clusters [2].
Moreover, large datasets are often messy, and contain data
inconsistencies and missing values (bad records). This may,
in turn, cause a task or even an entire application to crash.
The impact of task and node failures can be considerable in
terms of performance [3], [4], [1].

MapReduce makes task and node failures invisible to users;
it automatically reschedules failed tasks — due to a task
or node failure — to available nodes. However, recomput-
ing failed tasks from scratch can significantly decrease the
performance of long-running applications [4] — especially
for applications composed of several MapReduce jobs — by
propagating and adding up delays. A natural solution is to
checkpoint the state of ongoing computation on stable storage
and resume computation from the last checkpoint in case
of failures. However, checkpointing ongoing computation in
MapReduce is challenging for several reasons:
(1) Checkpointing techniques require the system to replicate
intermediate results on stable storage. This can significantly
decrease performance as MapReduce jobs often produce large
amounts of intermediate results.
(2) Persisting checkpoints on stable storage usually requires
intensive use of network bandwidth, which is a scarce resource
in MapReduce systems [1].
(3) Recovering tasks from failures requires fetching interme-
diate results from stable storage, which in turn utilizes both
network and I/O resources heavily.

As a result, using a straight-forward implementation of tra-
ditional checkpointing techniques [5], [6] would significantly
decrease the performance of MapReduce jobs.

A. Fault-Tolerance in MapReduce
In the MapReduce framework, one central process acts as

the master and coordinates MapReduce jobs while all other
processes act as workers on different nodes (see Figure 1).
Workers execute map tasks (mappers) and reduce tasks (re-
ducers) as assigned by the master and can run multiple tasks
concurrently. For clarity, we denote mappers and reducers
running on the same worker as local mappers and reducers,
while those running on different workers as remote mappers
and reducers. For example, in Figure 1, reducer1 is a local
reducer with respect to mapper1 and a remote reducer with
respect to mapper2.

In MapReduce, there exist three kinds of failures: task,
worker, and master failures.
(1) Task failures. A task failure is an interruption on a running
mapper or reducer, requiring the system to re-execute the
interrupted task. There are several reasons to have a task fail-
ure: (i) bad records: MapReduce jobs typically process large
messy datasets; (ii) contention: computing nodes compete for
shared resources, which makes tasks slow-down and thus to be
considered as failed; (iii) media corruption: MapReduce jobs

Master

Worker1

Mapper1 Reducer1

Node2

Node1

Keep alive
messages

Keep alive
messages

Worker2

Mapper2 Reducer2

Node3

Fig. 1. MapReduce general architecture: running a job composed of two
mappers and two reducers.

do not account for all possible forms of corrupted media, like
disk corruption [3], and; (iv) bugs: this includes bugs in jobs
as well as in third-party software.
When one of these reasons occurs, workers mark an inter-
rupted task as failed and inform the master of the task failure.
The master, in turn, puts the task back in its scheduling queue.
In case of bad records, MapReduce executes failing tasks two
more times before skipping a single bad record [1].
(2) Worker failures. We denote a failure that causes a worker
to stop accepting new tasks from the master as worker failure.
This failure often results from hardware failures, e.g. memory
errors, hard disk failures, or overheating CPUs. For example,
a 10-node cluster at Saarland University experienced two
network card failures and three hard disk failures within a
couple of months. Additionally, network maintenance may also
cause a worker to fail as reported in [1].
In MapReduce, the master relies on periodical communication
with all workers to detect worker failures. If the master
does not receive any response from a given worker during
a certain amount of time, the master marks the worker as
failed. Additionally, the master reschedules running (and some
completed) mappers and reducers.
(3) Master failures. In MapReduce, the master is a single point
of failure, but this can be easily solved by having a backup
node maintaining the status of the master node. Thus, the
backup node can take over the master role in case of failure.
This is why we consider the problem as a trivial engineering
issue and do not cover it in this paper.

B. Motivating Example

MapReduce has some drawbacks when recovering from task
and worker failures that significantly impact its performance.
For clarity, let us illustrate this using a web log analysis
example, containing ranking and user visit information for a
large number of web pages 1. Given the following two relations
taken from the benchmark proposed in [7]:
Rankings(R)=(pageURL, pageRank, avgDuaration)

UserVisits(UV)=(sourceIP, visitedURL, visitDate).

Suppose that we would like to know the pageURL and
pageRank of those pages that were visited more often than
1000 times during and between Christmas and New Year
holidays. The SQL statement for this query is illustrated in
Figure 2(a). Notice that this query is similar to the join query

1An additional motivating example can be found in [4].

(b) Query Plan

visitedURL, pageRank

Result

visitedURLpageURL

visitedURL,
visitDate

visitDate
BETWEEN
‘2009-18-12’ AND
‘2010-01-01’

visitedURL

R

UV
(c) Query Plan in MapReduce

key = pageURL
value = pageRank visitDate BETWEEN

‘2009-18-12’ AND
‘2010-01-01’

key = visitedURL
value = 1

agg
(values) > 1000

visitedURLpageURL

Classify by
Lineage

R UV’

push

Result

Intermediate

Results

pull

Local
File System

Classify by
Lineage

R UV

pull

Distributed
File System

Input

R
e

d
u

c
e

 p
h

a
se

M
a
p

 p
h

a
se

Select pageURL, pageRank

From Rankings as R, UserVisits as UV

Where R.pageURL = UV.visitedURL

and UV.visitDate between

‘2009-18-12’ and ‘2010-01-01’

Group By pageURL, pageRank

Having COUNT(*) > 1000

(a) SQL Statement

R, UV

UV’’

UV’

HAVING COUNT (*) > 1000

pageURL, pageRank

!

" #

$

%

"

"

!

#

Distributed
File System

Fig. 2. Running example.

used in [7]. A DBMS may perform this query by executing the
query plan depicted in Figure 2(b), while MapReduce would
perform it as shown in Figure 2(c). Based on the Facebook
application that loads 10 TB of compressed data per day [8],
assume that the size of relation R is 100 GB and that the size
of relation UV is 10 TB. Suppose that we want to analyze these
datasets using 100 workers, each being able to perform two
mappers concurrently. Using input splits of 256 MB — which
is a common configuration in practice — a single worker pro-
cesses on average (10.097 TB /100)/256 MB = 414 mappers.
As a worker runs two mappers concurrently, it requires 207
waves of mappers (with one wave we mean two concurrent
mappers). Based on the results for the join query presented
in [7], assume each mapper is processed in ∼17 seconds. Thus,
assuming perfect partitioning, 17× 207 = 3, 519 seconds (≈1
hour) on average are required to perform the complete map
phase of our running example.

Since in MapReduce failures are the rule and not the
exception [1], let’s assume that each input split contains one
bad record in the middle, i.e. at offset 128MB. This is realistic
as MapReduce jobs often process large messy datasets and
thus can contain missing fields or incorrect formatting [9] —
e.g. the date format might be incorrect. As a result, any mapper
will fail just after ∼8.5 seconds of processing time. Recall that
MapReduce executes failing tasks twice before deciding to
skip a bad record [1]. Since each worker performs 207 waves
of mappers, the entire MapReduce job will be delayed by at
least 8.5× 2× 207 = 3, 519 seconds (≈1 hour) with a single
bad record per task. This is a 100% runtime overhead, which
clearly shows the need for more sophisticated algorithms that
allow for reducing delays caused by these failures.

C. Contributions and Paper Outline
We propose a family of Recovery Algorithms for Fast-

Tracking (RAFT) MapReduce, which allows applications to
significantly reduce delays caused by task and worker failures.

Two salient features of RAFT are: inexpensive checkpoints and
fast recovery. RAFT is inexpensive since it exploits the fact
that MapReduce persists intermediate results at several points
in time. RAFT thus persists only little additional data, such as
split and task identifiers. RAFT is fast since it requires a few
milliseconds to collect all the checkpoint information required,
which results in a negligible delay in MapReduce jobs.

Contributions. In summary, the major contributions of this
paper are as follows:

(1) Local Checkpointing (RAFT-LC). We exploit that MapRe-
duce persists intermediate results at several points in time
to checkpoint the computing progress done by mappers and
reducers. This enables MapReduce to resume tasks from last
checkpoints in case of task failure and hence to speed up
applications under these failures.
(2) Remote Checkpointing (RAFT-RC). We invert the way in
which reducers obtain their input from workers: we push
the intermediate results into all reducers as soon as results
are produced by mappers. This allows MapReduce to avoid
rescheduling completed mappers in case of worker failures.
However, notice that the intermediate results required by
local reducers will be lost in case of worker failure, because
such results are not pushed to remote workers. Therefore, we
replicate such intermediate results to remote workers.
(3) Query Metadata Checkpointing (RAFT-QMC). We identify
two problems when replicating intermediate results required
by local reducers, which may significantly decrease the perfor-
mance of applications. First, MapReduce jobs usually produce
large amounts of intermediate results. Second, RAFT-RC can
recover from only one worker failure. This is because a
failed reducer on any of the failed workers will require to
pull intermediate results produced by other failed workers.
Therefore, instead of replicating intermediate results required
by local reducers, we create and replicate a query metadata
checkpoint file. This file consists of the offset of all those
input key-value pairs that produce an intermediate result and
the identifier of the reducers that consume such results. As a
result, we are able to speed-up the re-computation of mappers
as well as to recover from more than one worker failure.
(4) Scheduling. We propose a scheduling strategy that takes
advantage of the local and remote checkpoints. To do so, our
scheduling strategy differs from current MapReduce sched-
ulers in that (i) it delegates the responsibility to workers for
rescheduling failed tasks due to task failures (exploiting local
checkpoints), and (ii) it pre-assigns reducers to workers in
order to allow mappers to push intermediate results to reducers
(enabling remote checkpoints).
(5) Exhaustive Validation. We use realistic data to evaluate
several aspects of RAFT: performance under task and worker
failures, overhead, scale-up, and speed-up. The results demon-
strate that RAFT algorithms significantly outperform Hadoop
by up to 27% in runtime performance. We also show that
replicating intermediate results can incur to high runtime
overheads in MapReduce jobs.

The remainder of this paper is structured as follows. We
survey related work in Section II and give a brief description
of the MapReduce workflow in Section III. We then present
in Section IV our family of algorithms and our scheduling
strategy in Section V. We demonstrate that RAFT produces
the same output as normal MapReduce in Section VI. We
then present our experimental results in Section VII. Finally,
we conclude this paper in Section VIII.

II. RELATED WORK

MapReduce was proposed by Google in 2004 [1] as
a framework to facilitate the implementation of massively
parallel applications processing large data sets. By design,
MapReduce is already fault-tolerant. However, the algorithms
it implements to recover from both task and node failures
are quite simple and significantly decrease the performance
of applications under these failures. In particular, applications
whose pipelines consist of several MapReduce jobs, e.g.
Pig [10], [11], Hive [12], and Sawzall [13], would benefit
from better algorithms for failure recovery. This is because a
delayed job completion is awkward as it blocks subsequent
jobs, propagating and adding up delays.

A standard way to deal with task and worker failures is
checkpointing, which has been extensively discussed in the
database and distributed systems literature [14], [15], [16],
[5], [6]. Generally speaking, the idea is to checkpoint ongoing
computation on stable storage so that, in case of a failure,
the state can be restored and the computation can resume
from the last checkpoint. In MapReduce, however, network
bandwidth typically is a scarce resource [1]. At the same
time, MapReduce jobs produce large amounts of interme-
diate results. Therefore, replicating intermediate results may
significantly decrease the performance of applications. As a
result, straight-forward implementations of existing distributed
checkpointing techniques are not suitable for MapReduce. A
recent work [17] envisions a basic checkpointing mechanism,
but the authors neither discuss it nor implement it in their
prototype as of July 2010.

Some other research efforts have been made with the aim
of combining traditional DBMSs with MapReduce concepts,
where fault tolerance in distributed settings plays a key role.
For example, HadoopDB [18] aims at increasing DBMSs fault-
tolerance and scalability by using MapReduce as commu-
nication layer among several nodes hosting local DBMSs.
Hadoop++ [19] makes usage of index and co-partitioned
join techniques to significantly improve the performance of
MapReduce jobs. However, these approaches have the same
recovery limitations as the original MapReduce.

Recently, Yang et al. [4] proposed Osprey, a distributed SQL
database that implements MapReduce-style fault-tolerance
techniques. However, they have done no improvement on
recovery. As RAFT algorithms are quite general, one could
apply them to Osprey [4] as well as to Hadoop++ [19] to
speed up these systems under failures. In [20], the authors
proposed to replicate intermediate data produced for local
reducers. However, replicating large amounts of intermediate

data — as produced by MapReduce — requires considerable
network resources and many local I/O operations, which have
a negative impact on performance. Furthermore, this approach
can support one node failure only.

Finally, ARIES [21] uses fuzzy checkpoints to speed-up
both the checkpointing process and the analysis phase. ARIES,
instead of checkpointing the contents of dirty pages, check-
points the identifier of dirty pages (Dirty Pages Table). In
contrast to RAFT, the metadata information used by ARIES is
at the physical level. RAFT operates at a logical level; it keeps
track of input records that produce intermediate results, instead
of checkpointing the actual intermediate results themselves.

III. PRELIMINARIES

MapReduce has gained a lot of popularity, from both
research community and academia, because of its ease-of-
use and robustness. While users simply need to describe
their analytical tasks using two functions map and reduce,
the MapReduce framework handles everything else including
parallelization, replication, and failover. The MapReduce im-
plementation of Google is not freely available, but an open
source implementation exists, coined Hadoop.

MapReduce operates in three phases. In the first phase
(map phase), the framework runs a set of M mappers in
parallel. Each mapper is assigned a disjoint subset of the
input files. A mapper then executes a map-call for each input
“record” and stores the output into main memory; from time
to time workers spill buffered intermediate results to disk,
which usually happens whenever the buffer is on the verge
to overflow. When spilling intermediate results to disk, they
are logically partitioned into R parts based on an intermediate
key. Thus, M files will be generated in this phase. In the
second phase (shuffle phase), the output of each mapper is
grouped by intermediate key and redistributed across reducers.
In the third phase (reduce phase), each reducer executes a
reduce-call for each distinct intermediate key in its input and
the set of associated intermediate values. A reducer stores the
output for each group into a single file. Thus, the output of
the MapReduce job will be distributed over R files.

For clarity, let us illustrate the MapReduce model via the
running example we presented in Section I-B. MapReduce
performs this query as described below — see [19] for more
details on The Hadoop Plan. First, mappers pull relations
Rankings (R) and UserVisits (UV) from the distributed
file system and feed the map function with records of both
relations. Second, since a map function cannot know the origin
of records, it has to classify such input (e.g. by counting
attributes or exploiting a tag) by its lineage. Third, for R, a
mapper takes the attribute pageURL as key and pageRank
as value, and for UV, it first applies the date filter over
visitDate and issues visitedURL as key assigned with
a constant value of 1 (for those tuples having passed the filter,
UV′). Fourth, MapReduce groups this intermediate output by
the key pageURL and visitedURL, and stores it on local
disk. Fifth, reducers pull their required intermediate data and
eventually merge partial groups originating from different

Distributed
File System

spill

pull input

push results

Distributed
File System

pull intermediate
results (split-wise)

Reducer

Mapper

Distributed
File System

pull input

push results

Distributed
File System

push intermediate
results (spill-wise)

Reducer

Mapper
Remote
Worker

(b) RAFT(a) MapReduce/Hadoop

spill,
local checkpoint

& query metadata
checkpoint

RAFT-LC

RAFT-QMC (0)

RAFT-QMC (2)

RAFT-RC (1)

RAFT-RC (0)
&

RAFT-QMC (1)

replicate
(intermediate results || query

metadata checkpoint files)

Fig. 3. MapReduce vs RAFT (all three checkpointing algorithms).

mappers into one group per intermediate key. Sixth, the reduce
function can then be called once per group. A reducer divides
each group based on their lineage (by inspecting if the value
is 1). It then aggregates values from UV′ and only keeps those
having an aggregated value higher than 1, 000 (UV′′). Finally,
the reducer joins R with UV′′ and writes the output back to
the distributed file system.

IV. RAFT: A FAMILY OF FAST RECOVERY ALGORITHMS

We propose a family of fast and inexpensive Recovery
Algorithms for Fast-Tracking (RAFT) MapReduce. The beauty
of RAFT is that: (i) it requires only a few milliseconds to
collect all the required checkpoint information (fast) and (ii)
it piggy-backs checkpoints on the materialization of interme-
diate results (inexpensive). In the following, we first give an
overview of our solution and then provide details on how
RAFT recovers from task and worker failures.

A. Overview
A natural solution for recovering from task and worker

failures is to checkpoint ongoing computation on stable stor-
age. Such a solution, however, can decrease performance of
MapReduce jobs because intermediate results are usually quite
large. Nonetheless, MapReduce already produces and persists
intermediate results at several points in time and even copies
such results over the network anyway. We exploit this by
introducing three types of checkpoints: local, remote, and
query metadata checkpoints. Our checkpointing algorithms
write checkpoints when intermediate results are persisted by
workers. Piggy-backed checkpoints cause minimal overhead
and are still highly effective. Figure 3 illustrates the key
differences (green parts) between the original MapReduce and
RAFT, which we briefly describe below.

• Local Checkpointing. As MapReduce does not keep the
progress computation of tasks, it must perform failed
tasks from the beginning. We propose to perform Local
Checkpointing (RAFT-LC) to deal with this. RAFT-LC
stores task progress computation on the local disk of
workers without sending replicas through the network

Algorithm 1: Spill & Create Local Checkpoint
// Called by workers when spilling
Input : DataObject spill, InputBuffer inputBuffer, Task taskID
begin1

String spillID = spill.getSpillID();2
int offset = inputBuffer.getLastProcessedByte();3
fork4

boolean success = spill.flushToDisk();5
if success then6

LocalCheckpoint lcp =7
new LocalCheckpoint(taskID, spillID, offset);
boolean ok = lcp.checkConsistency();8
if ok then9

lcp.flushToDisk();10

end11

so as to not increase network contention (“RAFT-LC”
part in Figure 3(b)). One may think that RAFT-LC may
considerable slow down tasks, since it has to repeatedly
write all checkpoint information to disk, including the
output produced so far. In our proposal, however, workers
only perform RAFT-LC when they spill intermediate
results of tasks to disk anyway. Hence, RAFT-LC comes
almost for free.

• Remote Checkpointing. In case of worker failures,
MapReduce must reschedule completed mappers in order
to reproduce the intermediate results required by failed
reducers or non-scheduled reducers. To avoid this, we
propose a Remote Checkpointing (RAFT-RC) algorithm
that inverts the way in which reducers obtain their input
from mappers. Rather than reducers pulling their required
intermediate results, mappers push their produced inter-
mediate results into all reducers (scheduled or not) as
soon as they spill them to local disk (“RAFT-RC (0)”
part in Figure 3(b)). Notice that this algorithm involves no
additional network or disk I/O overhead, as each reducer
still receives only that data it needs to process anyway.
Obviously, RAFT-RC does not push intermediate results
to local reducers, because such results are already locally
available. However, these intermediate results will be lost
in case of worker failure. For this reason, RAFT-RC
replicates intermediate results required by local reducers
to remote workers (“RAFT-RC (1)” part in Figure 3(b)).

• Query Metadata Checkpointing. As a result of RAFT-
RC, the scheduler does not need to reallocate completed
mappers in case of worker failures, because relevant data
for all reducers is already copied remotely. However,
RAFT-RC comes at price: replicating intermediate results
required by local reducers can decrease the performance
of MapReduce applications as they usually produce large
amounts of intermediate results. Therefore, we propose a
Query Metadata Checkpointing (RAFT-QMC) that does
not replicate intermediate results required by local re-
ducers. Instead, RAFT-QMC creates a query metadata
checkpoint file per mapper, consisting of both: the offsets
of all input key-value pairs that produce intermediate
results; and the identifiers of the reducers that will con-
sume such results (“RAFT-QMC (0)” part in Figure 3(b)).

Algorithm 2: Recover Task Locally
// Called by workers during task initialization
Input : InputFileSplit inputSplit, int currentTaskAttempt
Output : ControlObject progress
begin1

boolean recovering = false;2
if currentTaskAttempt ≥ 2 then3

Directory taskDir = getLocalFS();4
if taskDir.containsCheckpoint() then5

LocalCheckpoint6
checkpoint = taskDir.getCheckpoint();
if checkpoint.isConsistent() then7

inputSplit.seek(checkpoint.getOffset());8
progress = checkpoint.getProgress();9
checkpoint.getSpillF iles();10
recovering = true;11

if recovering then12
return progress; // proceed from last checkpoint13

else14
return new ControlObject(); // start from scratch15

end16

RAFT-QMC then replicates these files to remote workers
(“RAFT-QMC (2)” part in Figure 3(b)) — typically 8
bytes per log record, which generates negligible overhead.
Like RAFT-RC, RAFT-QMC also pushes intermediate
results to remote reducers (“RAFT-QMC (1)” part in
Figure 3(b)).

We now explain in detail these three techniques in the
following three subsections.

B. Local Checkpointing (RAFT-LC)
Algorithm 1 shows the RAFT-LC pseudo-code for creating

the local checkpoints. A mapper executes this algorithm when
it spills intermediate results to local disk. RAFT-LC first
retrieves progress information from the buffer containing input
data (lines 2 and 3) before allowing for any further computa-
tion on the input buffer. After that, the mapper writes the spill
to local disk in a parallel thread (lines 4 and 5). If the spill
is correctly written, it proceeds to store the local checkpoint
information on disk (lines 6 − 10). A simple triplet of 12
bytes length is sufficient to store the checkpoint information:
taskID, a unique task identifier that remains invariant over
several attempts of the same task; spillID, the local path to
the spilled data; offset, specifying the last byte of input data
processed by spilling time. If an earlier checkpoint existed,
it would be simply overwritten. Notice that spilled data is
implicitly chained backwards. Thus, any checkpoint with a
reference to the latest spill is sufficient to locate all earlier
spill files as well.

After a task failure, workers initialize tasks as shown in
Algorithm 2. That is, a worker first verifies whether the
allocated task is a new attempt of a previously failed task
(line 3). In that case, the worker checks whether a checkpoint
is available on disk, deserializes it, and verifies whether it is
complete and consistent (lines 4− 7). If so, it simply resumes
the task by updating all relevant state and progress information
to the checkpoint. This simulates a situation where previous
spills appear as if they were just produced by the current task
attempt (lines 8−11). Otherwise, the task is either just starting

Algorithm 3: Create Remote Checkpoint
// Called by workers when spilling
Input : DataObject spill, output, ReducerScheduling reducers
begin1

Partitions[] P = spill.getReducerPartitions();2
foreach p in P do fork3

PhysicalNode reducerNode = reducers.getNode(p);4
if reducerNode != LOCAL NODE then5

replicateData(p, reducerNode);6
else7

PhysicalNode backupNode = getBackupNode();8
if doCreateReplica(p, backupNode) then9

replicateData(p, backupNode);10

end11

its first attempt or no valid checkpoint from the previous
attempts could be retrieved. In that case, a worker simply
processes again the task from the beginning.

C. Remote Checkpointing (RAFT-RC)

The main idea behind RAFT-RC is to push logical par-
titions2, from intermediate results produced by mappers, to
the reducers that will consume them. As opposed to the pull
model, the push model significantly increases the probabil-
ity of having intermediate results already backed up to the
destination node when a worker fails. Consequently, the push
model reduces the amount of data that need to be recomputed
after such failures.

Algorithm 3 shows the RAFT-RC pseudo-code for creating
the remote checkpoints. A mapper retrieves all the logical
partitions from a spill (line 2) and for each part it gets the
identifier of the reducer that will consume such a part (lines
3 and 4). Then, the mapper pushes the partitions to remote
reducers (lines 5 and 6). For fault-tolerance issues, the mapper
also keeps its local copy of intermediate results even after it
pushed them to remote workers. Indeed, a mapper does not
push the logical partitions for local reducers — for clarity
reasons we denote these partitions as local partitions — as they
are already copied locally. Nevertheless, local partitions would
be lost in case of worker failures. Though the number of local
partitions is typically very small (0 ≤ localPartitions ≤ 2),
such a loss is severe because all mappers completed by a
failed worker must be recomputed entirely. To avoid this,
RAFT-RC replicates local partitions to preassigned backup
nodes (lines 7− 10). This allows for not allocating completed
mappers in case of worker failures, because reducers have
their required data locally available and local reducers can
pull local partitions from backup nodes as well. Notice that
deciding when to replicate local partitions depends on several
factors such as the number and size of local partitions as well
as the current network bandwidth. A discussion on all these
factors is out of the scope of this paper. We then assume that
function doCreateReplica (line 9) returns a per-application
parameter set by the user launching the application — based on
his knowledge of the application and the MapReduce cluster.

2As explained in Section III, mappers logically partition intermediate results
based on an intermediate key and the number of reducers.

Algorithm 4: Startup With Remote Checkpoints
// Called by reducers when recovering
Input : File[] checkpoints, MapperNodes mappers
Output : ControlObject progress
begin1

foreach m in mappers do fork2
File[] allF iles = computeExpectedFiles(m) ;3
File[] missing = allF iles\checkpoints;4
foreach x in missing do fork5

backupNode = m.getBackupNode() ;6
File part = backupNode.pullData(x);7
if part #= null then8

part.store();9

else10
waitFor(x); // wait until pushed11

// join all parallel threads, then...
sortMerge(allF iles);12
return progress;13

end14

Algorithm 4 shows the pseudo-code of RAFT-RC for re-
covering from worker failures. For this, RAFT-RC initializes
reducers by taking into account remote checkpoints if there
are any. Recovery thus happens on the fly. That is, for each
mapper, a reducer first finds out the files — intermediate
results previously pushed by a mapper — that are not available
locally (lines 2 − 4 of Algorithm 4). If there is any missing
file, the reducer pulls each missing file from the backup node
of that mapper (lines 5 − 9). In case that a backup node
does not have a missing file, a reducer simply waits until
the mapper producing such a file pushes it (line 11). When
all files are available locally, a reducer finally merges and
sorts all files. Obviously, RAFT-RC works better if most of
the remote checkpoints are available locally on the reducer.
We achieve this by informing workers about reducers pre-
scheduling decisions early. We discuss our scheduling strategy
in more detail in Section V-B.

D. Query Metadata Checkpointing (RAFT-QMC)
In the previous section, we presented a remote checkpoint-

ing algorithm that allows us to deal with worker failures in a
more efficient way than the original MapReduce. Nonetheless,
with RAFT-RC, one has to deal with two problems that may
decrease performance of MapReduce jobs. First, MapReduce
jobs typically produce large amounts of intermediate results
and hence RAFT-RC will cause a significant overhead when
replicating local partitions. Second, RAFT-RC can recover
from a single worker failure only. As we pointed out so far, this
is because, in case of several worker failures, a failed reducer
on any of the failed workers will require to pull intermediate
results from the other failed workers. A simple solution to deal
with this second problem is to replicate all the intermediate
results produced by mappers. However, this solution is not
suitable as it will only aggravate the first problem.

Instead, we propose a new checkpointing algorithm, called
Query Metadata Checkpointing (RAFT-QMC), to tackle
these two problems. The idea is to keep track of input key-
value pairs that produce intermediate results in addition to
push intermediate results to remote reducers. In this way,
mappers can quickly recompute local partitions for failed

Algorithm 5: Create Query Metadata Checkpoint
// Called by mappers after producing an output
Input : Task taskID, InputBuffer inputBuffer, IntermediateKey key,

LogBuffer[] logBuffer, File[] file
begin1

int offset = inputBuffer.getLastProcessedByte();2
int id = Partitioner.getReducer(key);3
if logBuffer[taskID].remaining() == 0 then4

file[taskID].append(logBuffer[taskID]);5
logBuffer[taskID].clear();6

logBuffer[taskID].put(offset + id);7
end8

Algorithm 6: Read Query Metadata Checkpoint
// Called by mappers before setting
// the next key-value pair for the map function
Input : InputFileSplit inputSplit, Set offsets
Variables : int startPos = 0, currentPos; // buffer positions
begin1

if offsets.hasNext() then2
int off = offsets.next();3
int bytesToSkip = off − startPos;4
if bytesToSkip > MIN BY TES TO SKIP then5

inputSplit.seek(off); // random i/o6
startPos, currentPos = off ;7

else8
inputSplit.skip(bytesToSkip); // seq. i/o9
currentPos = off ;10
while currentPos− startPos > BUFFER SIZE do11

startPos += BUFFER SIZE;12

else13
inputSplit.moveToEnd();14

end15

reducers by processing only those key-value pairs that produce
intermediate results belonging to such partitions. To achieve
this, RAFT-QMC creates a query metadata checkpoint file
per mapper by logging the offset of each key-value pair that
produces intermediate results (see Algorithm 5). A simple
tuple of 8 bytes length is sufficient to store the query metadata
checkpoint information: offset, specifying the byte of the
input key-value pair; reducerID, the reducer requiring the
intermediate results produced by the input key-value pair.
RAFT-QMC pushes intermediate results to remote reducers
similarly as RAFT-RC (lines 2 − 6 of Algorithm 3), but it
does not replicate local partitions. Instead, as soon as a mapper
finishes, RAFT-QMC replicates the query metadata checkpoint
files to the preassigned backup nodes. Notice that, these files
are typically quite small and hence RAFT-QMC generates
much less overhead than RAFT-RC.

When a worker fails, the master simply reschedules the
failed tasks as new tasks. If the failed tasks contain a reducer,
the master reschedules all the mappers that were completed
by the failed worker — the worker that was running the
failed reducer. However, these completed mappers only have
to recompute the local partitions lost by the failed worker.
To do so, a mapper only processes the key-value pairs that
produce a relevant output for missing local partitions as shown
in Algorithm 6. That is, a mapper moves the pointer in the
input buffer to the next offset in the query metadata checkpoint
file (lines 2 − 12). Notice that, RAFT-QMC performs a seek
(lines 5− 7) on the input split only when this results in better

Algorithm 7: Master Node: Reallocate Tasks
// Called by the master whenever a failure occurs
Input : Failure fail
begin1

if fail.isNodeFailure() then2
Node node = fail.getNode();3
Task[] interruptedTasks = node.getInterruptedTasks();4
Task[] reduceTasks;5
foreach t ∈ interruptedTasks do6

// reschedule
schedule(t);7
if t.isReduceTask then8

reduceTasks.add(t);9

// re-compute output for local reducers
Task[]10
completedMapTasks = node.getCompletedMapTasks();
if !reduceTasks.isEmpty then11

foreach t ∈ completedMapTasks do12
schedule(t, reduceTasks.getIdSet());13

else14
// reschedule task on same node as previously
schedule(fail.getTask(), fail.getNode());15

end16

performance than performing a sequential read (Lines 8− 12)
— typically one should skip at least 4 MB to perform a seek.
As soon as there is no more offset left in the query metadata
checkpoint file, it moves the pointer to the end of the buffer
— which results in the finalization of a mapper. As a result
of this process, RAFT-QMC is able to significantly speed-up
the recovery process as mappers do not perform full scans of
their input splits again.

V. SCHEDULING TASKS WITH RAFT
Like in the original MapReduce, our scheduler only assigns

new tasks to available workers. Our scheduler, however, differs
significantly from the original MapReduce when reallocating
tasks after failures. We describe this reallocation behavior in
this section and sketch it in Algorithm 7. For simplicity, we
consider a single MapReduce job in the following.

A. Scheduling Mappers
We use a data locality optimization as in [1], that is, we

aim at allocating mappers as close as possible to the data
they consume. Thus, when a worker is available, the scheduler
picks, if possible, a mapper from its queue that requires data
stored on the same node. If not, the scheduler tries to pick one
mapper requiring data located on the same rack.

To deal with task and worker failures, our scheduler pro-
ceeds as follows.
(1) Task failures. Our scheduler allocates a failed mapper
to the same computing node right after its failure so as to
reuse the existing local checkpoints (line 15 of Algorithm 7).
Furthermore, this allows us to significantly reduce the waiting
time for rescheduling failed mappers. After the reallocation of
a failed mapper, a worker then has to restart the failed mapper
as discussed in Section IV-B.
(2) Worker failures. Our scheduler puts failed mappers into its
queue. Hence, these tasks become again eligible for scheduling
to available workers (lines 6 and 7). Furthermore, unlike

schedulers proposed in the literature [1], [22], [23], our
scheduler reallocates mappers — completed by failed workers
— to recompute only the local partitions. This results in a
significant speed-up of mappers (lines 10 − 13). To do so,
workers process input splits by considering only relevant key-
value pairs as described in Algorithm 6.

B. Scheduling Reducers

So far, we saw that RAFT-RC as well as RAFT-QMC
push intermediate results to all reducers, even if they are
not scheduled yet, in order to recover from worker failures
efficiently. To achieve this, our scheduler pre-assigns all re-
ducers to workers when launching a MapReduce job; then,
it informs mappers of the pre-scheduling decision. With this
pre-assigment, mappers know in advance to which workers to
push the data. Then, when a worker is available to perform
one reducer, the scheduler simply allocates a task from its
set of reducers to it by taking into account the previous pre-
assignment. This allows us to guarantee data locality with
the intermediate results pushed by mappers. Some workers,
however, typically complete tasks faster (fast workers) than
others (slow workers). This occurs for two main reasons: (i)
fast workers simply have more computing resources than slow
worker (heterogenous clusters), and (ii) workers may take
unusual long time to perform tasks because of hardware or
software dysfunctions (strugglers).

As fast workers usually finish their reducers before slow
workers, our scheduler allocates tasks from other sets of
reducers (belonging to slow workers) to fast workers as soon
as they finish with their own reducers set. In these cases, our
scheduler falls back to the standard Hadoop: fast workers have
to pull the required intermediate results from slow workers.
Thus, to reduce the cost of data shipping in these cases, our
scheduler picks reducers from a large set of remaining reducers
— giving priority to those sets located in the same rack. Our
scheduler proceeds as follows to deal with task and worker
failures.
(1) Task failures. As for mappers, our scheduler allocates a
failed reducer to the same computing node right after its failure
in order to take advantage of our RAFT-LC algorithm (line
15 of Algorithm 7). Workers then resume failed reducers as
discussed in Section IV-B.
(2) Worker failures. In these cases, our scheduler falls back to
the standard Hadoop: it first puts failed reducers back into
its queue and reallocates them when one worker becomes
free to perform one reducer (lines 6 − 9). When a reducer is
rescheduled to a new worker, it pulls all required intermediate
results from all mappers containing part of such results. To
reduce the impact on performance caused by this shuffle phase,
our scheduler strives to allocate failed reducers to one of the
workers storing a part of their required data. Notice that, in
contrast to mappers, the scheduler reallocates running reducers
only, because completed reducers store their output into stable
storage such as GFS or HDFS.

VI. CORRECTNESS

In this part, we show the equivalence of output between our
recovery algorithms and the original MapReduce. As in [1],
we assume that MapReduce jobs are deterministic.

Let It = {i0, ..., in} be the set of input records required
by a task t. For any input record i ∈ It, t produces a set Oi

of output results, where Oi might be the empty set — i.e., t
produces no result by processing input record i. Given a set
It, t produces a set Ot =

⋃n
i=0 Oi. In other words, a set It

maps to a set Ot. Formally, after task t processes the complete
set It of input records, MapReduce ensures Equation 1.

∀ i ∈ It, ∃Oi ⊆ Ot : i → Oi (1)

In case of task or worker failure, MapReduce still ensures
above equation by processing again the entire set I of input
records. We now demonstrate that our set of recovery algo-
rithms ensure the same output as MapReduce for the same set
of input records even in case of failure. With this in mind,
we first demonstrate that mapper and reducer receives the
same input and thus produces the same output as original
MapReduce in case of task failure.

Lemma 1: Given a task t, RAFT-LC ensures the same sets
It and Ot as the original MapReduce in case of task failure.

Sketch: Let Ic = {i0, ..., ic} be the set of input records
read by a task t from set It (i.e. Ic ⊆ It) until the last
local checkpoint done by the task — where ic is the last
input record whose set Oic =

⋃c
i=0 Oi of output results is

included in the last checkpoint. By Equation 1, we have the
corresponding set Oc of output results after processing Ic,
i.e. Ic → Oc. By convention, if task t fails, t is rescheduled
to the same worker and RAFT-LC only processes the set
Ic = It\Ic = {ic+1, .., in} of input records, i.e., the set of
input records whose output was not persisted yet. Again, we
have the corresponding set O′

c of output records after RAFT-
LC processes the set Ic of input records, i.e. Ic → O′

c. By
inferring from Equation 1, we have that O′

c ∪ Oc = Ot as
Ic ∪ Ic = It. Therefore, RAFT-LC ensures the same input It

and the same output Ot as the original MapReduce. In case
that no local checkpoint was produced by t, RAFT-LC falls
back to the original recovery process of MapReduce. Hence,
it fetches again the entire set It of input records and trivially
produces the same set Ot as the original MapReduce.

We now demonstrate that any task receives the same input
and produces the same output as MapReduce in case of
worker failures. Due to space constraints, we prove the correct
operation of RAFT-RC only.

Lemma 2: Given task t, RAFT-RC ensures the same sets It

and Ot as the original MapReduce in case of worker failure.
Sketch: Let Iw ⊆ It be the set of intermediate results

stored by remote workers (denoted by set W) and Ib ⊆ It be
the set of intermediate results required by local reducers and
thus stored on a backup worker (with Iw ∩ Ib = ∅). Then,
let Iu = It\(Iw ∪ Ib) denote the set of intermediate results
not yet produced. That is, Iw ∪ Ib are the intermediate results
produced by completed mappers, while Iu are the intermediate

results to be produced by running and non-scheduled mappers.
Now, given a worker failure, RAFT-RC first reschedules a
running task t to a different worker. If t is a reducer, RAFT-RC
pulls both set Iw from W and set Ib from the backup worker
of the failed worker. Then, it waits for set Iu to be pushed
by uncompleted mappers. Thus, when uncompleted mappers
finish to push set Iu, t will contain the same set It as the
original MapReduce. Hence, by Equation 1, t will produces
the same set Ot of output records as MapReduce. If failed task
t is a mapper, RAFT-RC falls back to the original recovery
algorithm of MapReduce by fetching again the entire set It.
Thus, by Equation 1, RAFT-RC ensures the same set Ot as
the original MapReduce.

We can then conclude with the following theorem.
Theorem 1: Given a task t, RAFT algorithms always en-

sure the same sets It and Ot, of input and output records
respectively, as the original MapReduce.

Proof: Implied by Lemma 1 and Lemma 2.

VII. EXPERIMENTS

We measure the performance of the RAFT algorithms with
three main objectives in mind:
(1) to study how they perform under task and worker failures,
(2) to evaluate how well they scale up, and
(3) to measure the overhead they generate over Hadoop.

We first present the systems we consider (Section VII-A),
the configuration of the testbed (Section VII-B), the bench-
marks for our experiments (Section VII-C), and the method-
ology for running our experiments (Section VII-D).

A. Tested Systems
We take Hadoop as baseline since it is the most popular

open-source implementation of the MapReduce framework [1].
We consider the following configuration settings.

• Hadoop. We use Hadoop 0.20.1 running on Java 1.6
and the Hadoop Distributed File System (HDFS). We
make the following changes to the default configuration
settings: (1) we store data on HDFS using blocks of
256 MB, (2) we enable Hadoop to reuse the task JVM
executor instead of restarting a new process per task, (3)
we allow a worker to concurrently run two mappers and
a single reducer, and (4) we set HDFS replication to 2.

We implemented all RAFT algorithms in a prototype we
built on top of Hadoop 0.20.1 using the same configuration
settings as above. To better evaluate the RAFT algorithms, we
benchmark each recovery algorithm we proposed in Section IV
separately. In other words, we evaluate the following systems:

• RAFT-LC, local checkpointing algorithm that allows for
dealing with task failures. For this, RAFT-LC check-
points the progress of tasks to local disk at the same
time that workers spill intermediate results to local disk.

• RAFT-RC, remote checkpointing algorithm that allows
for recovering from worker failures. For this, RAFT-
RC pushes intermediate results to remote reducers and
replicates intermediate results required by local reducers.

• RAFT-QMC, query metadata checkpointing algorithm
that, contrary to RAFT-RC, allows for recovering from
more than one worker failure while replicating less
amounts of data. Like RAFT-RC, RAFT-QMC pushes
intermediate results to remote reducers, but we instead
use the pull model in the RAFT-QMC experiments (Sec-
tion VII-F). We do this since we want to measure the
real impact in performance of creating query metadata
checkpoints only.

• Hadoop+Push, we use this variant of Hadoop to evaluate
the benefits for MapReduce when using using the push
model in the shuffle phase, instead of the pull model.

• RAFT, to evaluate how well our techniques perform
together, we evaluate how well RAFT-LC, RAFT-QMC,
and Hadoop+Push perform together. Notice that we use
RAFT-QMC instead of RAFT-RC, because it recovers
from more than one worker failure.

B. Cluster Setup

We run all our experiments on a 10-node cluster where we
dedicate one node to run the JobTracker. The remaining nine
nodes ran five virtual nodes each, using Xen virtualization, i.e.
resulting in a total of 45 virtual nodes. Node virtualization is
also used by Amazon to scale up its clusters. However, we
recently showed that Amazon EC2 suffers from high variance
in performance [24]. Therefore, running the experiments on
our cluster allows us to get more stable results. Each physical
node in our cluster has one 2.66 GHz Quad Core Xeon
running 64-bit platform Linux openSuse 11.1 OS, 4x4 GB
main memory, 6x750 GB SATA hard disks, and three Gigabit
network cards. We set each virtual node to have a physical
750 GB hard disk and physical 3.2 GB main memory. The
physical nodes are connected with a Cisco Catalyst 3750E-
48PD, which use three Gigabit Ethernet ports for each node
in channel bonding mode. From now on, we refer to virtual
nodes as nodes for clarity.

C. Data and Benchmarks

We use the same data generator proposed by Pavlo et al. [7]
to create all datasets for our experiments. Briefly, this bench-
mark first generates a set of HTML documents, each of them
having links to other pages following a Zipfian distribution. It
then creates Rankings and UserVisits relations, using
the set of HTML documents and some randomly generated
attribute values. We use a total dataset size of 50 GB for
Rankings (∼900 M tuples) and of 1 TB for UserVisits
(∼ 7, 750 M tuples). We consider a subset of two tasks of
the benchmark proposed in [7]: (1) the selection task and
(2) the simple aggregation task. Additionally, we consider
a third task that modifies the simple aggregation task by
introducing a selection predicate on visitDate: (3) the
selective aggregation task. In the following , we describe these
three tasks in more detail.
Q1. SELECTION TASK:

SELECT pageURL, pageRank
FROM Rankings

WHERE pageRank > 10;

The MapReduce job for this task consists of a map
function that parses the input key-value pairs and outputs
those pageURLs whose page rank is above a certain
threshold. As in [7], this threshold defaults to 10 in our
experiments. Finally, a single IdentityReducer merges the
results and store the results on HDFS. We consider this
task as it is a very common analytical task in practice, but
also because MapReduce jobs often filter out their input.

Q2. SIMPLE AGGREGATION TASK:
SELECT sourceIP, SUM(adRevenue)
FROM UserVisits
GROUP BY sourceIP;

The MapReduce job for this task consists of a map
function and reduce function. The map function projects
the two relevant fields, sourceIP and adRevenue, as
intermediate key-value pairs. The reduce function simply
aggregates the adRevenue for each sourceIP group.
We consider this task because, like in several MapReduce
jobs, it produces large amounts of intermediate results.
Hence, this task allows us to better understand the impact
in performance of RAFT algorithms.

Q3. SELECTIVE AGGREGATION TASK:
SELECT sourceIP, SUM(adRevenue)
FROM UserVisits
WHERE visitDate > 1990-01-01
GROUP BY sourceIP;

The MapReduce job for this task consists of a map
function and reduce function. The map function projects
the fields sourceIP and adRevenue of any input key-
value pair whose visitDate is after January 1st 1990.
The reduce function then aggregates the adRevenue for
each sourceIP group. We consider this task because
we can control the amount of shuffled data — varying
the predicate on visitDate. Thereby, we can represent
several MapReduce jobs used in practice.

D. Methodology

We proceed in three phases so as to have a deeper under-
standing of performance of the RAFT algorithms. In summary,
we evaluate RAFT algorithms in the following scenarios:
(1) Dealing with task failures (Section VII-E). In this series
of experiments, we focus on evaluating how well RAFT-LC
allows applications to recover from task failures.
(2) Dealing with worker failures (Section VII-F). In these
experiments we evaluate how well RAFT-RC and RAFT-QMC
allow applications to perform under worker failures.
(3) Putting everything together (Section VII-G). We focus on
evaluating RAFT in a mixed failure scenario. In other words,
we want to know how well RAFT performs under task and
worker failures at the same time. Additionally, we measure
how much overhead the RAFT algorithms generate.

Notice that, for all results we present in this paper, we run
each benchmark three times and report the averaged results.

E. RAFT-LC: Dealing with Task Failures
To evaluate RAFT-LC in the presence of task failures, we

consider a “bad records scenario”. That is, we introduce a
varying number of bad records in input splits, which cause
mapper to fail. As mappers perform RAFT-LC when they
spill to disk, we evaluate RAFT-LC in two different scenarios:
(i) when mappers rarely spill to disk, and (ii) when mappers
frequently spill to disk. Therefore, we only present results for
Q1 and Q2 since they represent the two extremes in terms of
the amount of intermediate results produced by mappers.

Figure 4(a) shows the runtime results for Q1 with a varying
number of bad records. We observe that RAFT-LC slightly out-
performs Hadoop for one bad record per split. but significantly
outperforms Hadoop by up to 27% for a higher number of bad
records. RAFT-LC performs better than Hadoop as RAFT-
LC allows failed mappers to reuse the materialized results
produced so far. Notice that the high selectivity of this task is
not optimal for RAFT-LC, as mappers rarely spill intermediate
results to disk — resulting in few local checkpoints.

Figure 4(b) shows the runtime results for Q2. In contrast
to the results of Q1, we observe that RAFT-LC outperforms
Hadoop by 25% already for one bad record — increasing
to 27% for a higher number of bad records. This is because
mappers do not filter any information from their input. Conse-
quently, mappers spill much more intermediate results and thus
RAFT-LC frequently creates local checkpoints. As a result,
RAFT-LC can significantly speed-up mappers by reusing more
intermediate results. These results show the potential runtime
improvement of RAFT-LC, as in practice MapReduce jobs
typically produce large amounts of intermediate results. Notice
that we do not present results for more than three bad records
per input split, because we had to kill Hadoop since it was
running for more than ten hours without finishing.

F. RAFT-RC & RAFT-QMC: Dealing with Worker Failures
To evaluate RAFT-RC and RAFT-QMC in the presence of

worker failures, we kill a varying number of workers in the
middle of the reduce phase. We present results only for Q2
and Q3, because the reduce phase for Q1 is too short (∼3
seconds) to kill the worker. We consider a worker that does
not communicate with the master node during 60 seconds as
failed. One of our goals in this section is to know whether
RAFT-RC or RAFT-QMC performs better. Recall that these
techniques differ in the way they recover from failures of local
reducers. With this in mind, we evaluate both algorithms in a
scenario with no worker failures and with one worker failure.
Notice that we do not consider more than one worker failure in
this experiment, because RAFT-RC cannot recover from more
than one worker failure.

Table I presents the results for Q2 when comparing RAFT-
RC with RAFT-QMC. The results show that RAFT-QMC runs
5% faster than RAFT-RC with no worker failures (we study
this in detail in Section VII-G). We also observe that RAFT-
QMC can still slightly outperform RAFT-RC with one worker
failure. This is an interesting result as RAFT-QMC needs to
locally recompute lost local partitions, while RAFT-RC only

 0

 500

 1000

 1500

 2000

 2500

 0 1 2 3 4 5

Av
er

ag
e

Ru
nt

im
e

[s
ec

]

Number of bad records per split

Hadoop
RAFT-LC

(a) RAFT-LC results for Q1.

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 1 2 3

Av
er

ag
e

ru
nt

im
e

[s
ec

]

Number of bad records per split

Hadoop
RAFT-LC

(b) RAFT-LC results for Q2.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 0 1 2

Av
er

ag
e

R
un

tim
e

[s
ec

]

Number of worker failures

Hadoop
RAFT-QMC

(c) RAFT-QMC results for Q2.

 0

 1000

 2000

 3000

 4000

 5000

 0 1 2

Av
er

ag
e

R
un

tim
e

[s
ec

]

Number of worker failures

Hadoop
RAFT-QMC

(d) RAFT-QMC results for Q3.

 0

 5000

 10000

 15000

 20000

Q1 Q2 Q3

Av
er

ag
e

Ru
nt

im
e

[s
ec

]

Hadoop
Hadoop+Push

RAFT

762834835

19.5k

15.2k

19.5k

13.1k

17k 16.9k

(e) RAFT results for Q1, Q2, and Q3.

 0

 100

 200

 300

 400

 500

 600

 10 20 30 40

Av
er

ag
e

Ru
nt

im
e

[s
ec

]

Data size [GB]

Hadoop
RAFT

(f) RAFT scalability for Q1.

Fig. 4. (a)-(b) RAFT-LC results for Q1 and Q2; (c)-(d): RAFT-QMC results for Q2 and Q3; (e) RAFT results for all three tasks; (f) RAFT scalability results.

TABLE I
RAFT-RC AND RAFT-QMC RESULTS FOR Q2 (RUNTIME IN SECONDS).

RAFT-RC RAFT-QMC
No worker failures 4601 4390
One worker failure 4699 4691

has to fetch such partitions from backup nodes. Our findings
prove that RAFT-QMC can efficiently recover from worker
failures with less network traffic and, at the same time, can
deal with more than one worker failure.

Since RAFT-RC is limited to a single worker failure and
RAFT-QMC performs better, we only compare RAFT-QMC
with Hadoop for a larger number of worker failures. In
these experiments, we do not consider more than two worker
failures since such situations are not common in practice.
Figure 4(c) shows the runtime results of these experiments
for Q2. We observe that RAFT-QMC outperforms Hadoop
by ∼7% on average. This is because RAFT-QMC makes less
usage of the network by only replicating small query metadata
checkpoint files, instead of important amounts of intermediate
results required by local reducers. Furthermore, RAFT-QMC
recomputes mappers that were completed by failed workers for
reproducing lost local partitions only. This does not occur in
Hadoop, where mappers process their whole input split again.
Figure 4(d) shows the runtime results for Q3. These results
show again that RAFT-QMC outperforms Hadoop for both
one and two worker failures. However, we see that the runtime
difference between RAFT-QMC and Hadoop was decreased
with respect to Q2, because Q3 produces less intermediate
results than Q2. As a result, the reduce phase run faster and
thus a worker failure has less impact in performance.

TABLE II
OVERHEAD OF RAFT ALGORITHMS.

RAFT-LC RAFT-RC RAFT-QMC RAFT
Q1 7.0% 13.7% 3.3% 5.7%
Q2 6.3% 9.5% 4.3% 6.6%
Q3 6.5% 9.8% 4.7% 8.7%

G. RAFT: Putting Everything Together

We demonstrated in previous sections that, on average,
RAFT algorithms significantly outperform Hadoop. We now
evaluate how well they perform together, i.e. we evaluate our
RAFT prototype. For this, we introduce two bad records per
input split and kill only one worker as in Section VII-F.

Figure 4(e) illustrates these results for all three tasks. We
observe that RAFT outperforms Hadoop by 23% on average
for tasks Q2 and Q3, which are common tasks in practice.
Moreover, we observe that RAFT outperforms Hadoop by 10%
for Q1. As explained in Section VII-F, this is because Q1
is highly selective and thus RAFT produces few checkpoints.
One can imagine that the good performance of RAFT is mainly
due to the push model that RAFT uses. The results, however,
prove that this is not the case. We observe that Hadoop+Push
has about the same performance as Hadoop. This clearly
demonstrates the high efficiency of RAFT algorithms.

We then evaluate how well RAFT scales in terms of dataset
size. For fairness reasons — regarding Hadoop —, we ran
these experiments with no failures as Hadoop suffers from
tasks and worker failures. Figure 4(f) shows these scalability
results for Q1 — we do not present results for Q2 nor Q3,
because we did not observe any different behavior from the
results we present here. We observe that RAFT scales as
well as Hadoop, which emphasizes the scalability of RAFT.

Interestingly, we see that RAFT produces negligible overhead,
while providing the same scalability as, and better failover
performance than, Hadoop. Additionally, we analyzed how
well RAFT reacts when new workers are added to the cluster
(speed-up), but we do not show the results here due to space
constraints. In those results, we observed that the speed-up of
RAFT is the same as the speed-up of Hadoop and hence close
to the optimal speed-up.

Finally, Table II shows the overhead of RAFT algorithms for
tasks Q1, Q2, and Q3. Interestingly, we observe that RAFT-
QMC generates an overhead of only 3.3% for Q1, of 4.3%
for Q2, and of 4.7% for Q3, which is four times less than
RAFT-RC for Q1 and two times less for Q2 and Q3. RAFT-
QMC significantly outperforms RAFT-RC since, instead of
replicating intermediate results (more than 150 MB per mapper
for Q2), it only replicates query metadata checkpoint files (less
than 6 MB per mapper for Q2). Still, RAFT-QMC recovers
from worker failures slightly faster than RAFT-RC, as shown
in Table I. On the other side, we observe that the overhead
of RAFT-LC and RAFT is less than 8.8% which is also
quite acceptable — especially for long-running jobs that take
advantage of the recovery properties of using RAFT.

In summary, when compared to Hadoop, our results show
that RAFT algorithms generate on average only ∼3% of
runtime overhead, while they allow MapReduce jobs to run
∼23% faster in the presence of task and worker failures.

VIII. CONCLUSION

In large-scale systems, task and worker failures are no
longer an exception, but rather a characteristic of these sys-
tems. In this context, MapReduce has gained a great popularity
as it gracefully and automatically achieves fault-tolerance.
In this paper, however, we showed that MapReduce has
performance issues in the presence of task and worker failures.

To deal with this issue, we proposed a family of Recovery
Algorithms for Fast-Tracking (RAFT) MapReduce in the pres-
ence of these failures. The beauty of RAFT algorithms —
namely, RAFT-LC, RAFT-RC, and RAFT-QMC — is that they
exploit the fact that MapReduce persists intermediate results
at several points in time in order to piggy-back checkpoints
on tasks progress computation. In particular, besides a local
and remote checkpointing algorithm (RAFT-LC and RAFT-
RC), we proposed a query metadata checkpointing algorithm
(RAFT-QMC) to deal with several worker failures at very
low network cost. To achieve this, mappers produce query
metadata checkpoints of task progress computation, which
contains: (i) all offsets of input key-value pairs that produce an
intermediate result, and (ii) the identifier of the reducers that
will consume such results. As a result, re-scheduled mappers
(which were completed by a failed worker) only recompute
intermediate results required by local reducers. To take full
advantage of RAFT algorithms, we proposed a scheduling
strategy that: (i) delegates the responsibility to workers for
rescheduling tasks failed due to task failures, and (ii) pre-
assigns reducers to workers in order to allow mappers to push
intermediate data to reducers.

We implemented RAFT algorithms in a prototype we built
on top of Hadoop — a popular open source MapReduce imple-
mentation. We experimentally evaluated RAFT algorithms and
compared their effectiveness with the original Hadoop. The
results demonstrated that RAFT algorithms incur negligible
runtime overhead and outperform Hadoop runtimes by 23%
on average, and up to 27%, under task and worker failures.
Another important result is that RAFT algorithms have the
same scalability as Hadoop, while they allow MapReduce
jobs to recover faster from task and worker failures. Last but
not least, we showed that RAFT-QMC produces much less
runtime overhead than a straight-forward implementation of a
checkpointing technique (RAFT-RC).

REFERENCES

[1] J. Dean and S. Ghemawat, “Mapreduce: Simplified Data Processing on
Large Clusters,” in OSDI, 2004.

[2] B. Schroeder and G. Gibson, “A Large-Scale Study of Failures in High-
Performance Computing Systems,” in DSN, 2006.

[3] S. Subramanian et al., “Impact of Disk Corruption on Open-Source
DBMS,” in ICDE, 2010.

[4] C. Yang et al., “Osprey: Implementing MapReduce-Style Fault Tolerance
in a Shared-Nothing Distributed Database,” in ICDE, 2010.

[5] M. Elnozahy et al., “A Survey of Rollback-Recovery Protocols in
Message-Passing Systems,” CSUR, vol. 34, no. 3, 2002.

[6] K. Salem and H. Garcia-Molina, “Checkpointing Memory-Resident
Databases,” in ICDE, 1989.

[7] A. Pavlo et al., “A Comparison of Approaches to Large-Scale Data
Analysis,” in SIGMOD, 2009.

[8] A. Thusoo et al., “Data Warehousing and Analytics Infrastructure at
Facebook,” in SIGMOD, 2010.

[9] T. White, Hadoop: The Definitive Guide. O’Reilly, 2009.
[10] A. Gates et al., “Building a HighLevel Dataflow System on Top of

MapReduce: The Pig Experience,” PVLDB, vol. 2, no. 2, 2009.
[11] C. Olston et al., “Pig Latin: A Not-So-Foreign Language for Data

Processing,” in SIGMOD, 2008.
[12] A. Thusoo et al., “Hive - A Warehousing Solution Over a Map-Reduce

Framework,” PVLDB, vol. 2, no. 2, 2009.
[13] R. Pike et al., “Interpreting the Data: Parallel Analysis with Sawzall,”

Scientific Prog., vol. 13, no. 4, 2005.
[14] M. Balazinska et al., “Fault-Tolerance in the Borealis Distributed Stream

Processing Systems,” TODS, vol. 33, no. 1, 2008.
[15] J.-H. Hwang et al., “A Cooperative, Self-Configuring High-Availability

Solution for Stream Processing,” in ICDE, 2007.
[16] A.-P. Liedes and A. Wolski, “SIREN: A Memory-Conserving, Snapshot-

Consistent Checkpoint Algorithm for in-Memory Databases,” in ICDE,
2006.

[17] T. Condie et al., “MapReduce Online,” in USENIX NSDI, 2010.
[18] A. Abouzeid et al., “HadoopDB: An Architectural Hybrid of MapReduce

and DBMS Techniques for Analytical Workloads,” PVLDB, vol. 2, no. 1,
2009.

[19] J. Dittrich et al., “Hadoop++: Making a Yellow Elephant Run Like a
Cheetah (Without It Even Noticing),” PVLDB, vol. 3, no. 1, 2010.

[20] S. Y. Ko et al., “Making cloud intermediate data fault-tolerant,” in SoCC.
ACM, 2010, pp. 181–192.

[21] C. Mohan et al., “ARIES: A Transaction Recovery Method Supporting
Fine-Granularity Locking and Partial Rollbacks Using Write-Ahead
Logging,” ACM Trans. Database Syst., vol. 17, no. 1, pp. 94–162, 1992.

[22] M. Isard et al., “Quincy: Fair Scheduling for Distributed Computing
Clusters,” in SOSP, 2009.

[23] M. Zaharia et al., “Delay Scheduling: A Simple Technique for Achieving
Locality and Fairness in Cluster Scheduling,” in EuroSys, 2010.

[24] J. Schad, J. Dittrich, and J. Quiane-Ruiz, “Runtime Measurements in the
Cloud: Observing, Analyzing, and Reducing Variance,” PVLDB, vol. 3,
no. 1, 2010.

12

